你的位置:首頁 > 傳感技術(shù) > 正文

能源危機下輔助駕駛算力技術(shù)路線展望

發(fā)布時間:2022-10-12 責任編輯:lina

【導讀】根據(jù)中國國家應急管理部門統(tǒng)計,2022年第一季度,智能汽車發(fā)生自燃的事故一共發(fā)生了640起,平均1天有7輛電動車發(fā)生自燃。電動車起火的原因主要是以下幾點:電池過熱、電池老化、電池遭受碰撞、高負荷運行等等。其中,電池的高負荷運行是最嚴重的原因之一。


ADAS高功耗、低效率所帶來的能源危機


新能源車發(fā)熱和能耗問題


根據(jù)中國國家應急管理部門統(tǒng)計,2022年第一季度,智能汽車發(fā)生自燃的事故一共發(fā)生了640起,平均1天有7輛電動車發(fā)生自燃。電動車起火的原因主要是以下幾點:電池過熱、電池老化、電池遭受碰撞、高負荷運行等等。其中,電池的高負荷運行是最嚴重的原因之一。


視覺算法算力的高功耗和低效率


隨著特斯拉通過視覺算法來實現(xiàn)自動駕駛。各大Tier 1大廠紛紛進入算力的軍備競賽,算力不斷加大,較大的算力需要消耗較高的功耗。


能源危機下輔助駕駛算力技術(shù)路線展望

圖1 視覺算法引發(fā)功率消耗問題


ADAS的多傳感器融合策略


實際上自動駕駛領域,變化的區(qū)域占整個圖像的很小一部分,大部分視覺數(shù)據(jù)是無用數(shù)據(jù)。傳統(tǒng)的視覺處理花費了大量精力來處理這些無用的背景,這浪費了大量的算力和時間。采用事件處理系統(tǒng),通過時間系統(tǒng)觸發(fā)判斷方式,可以提高100-1000倍的處理速度,減少運算量。


能源危機下輔助駕駛算力技術(shù)路線展望

圖2 多傳感器融合技術(shù)策略


事件相機無法提供深度信息,目前依靠相機的計算方式還屬于簡單的蠻力計算。采用事件相機結(jié)合激光雷達、毫米波雷達、超聲波雷達等方式就可以實現(xiàn)完美的3D感知。同時,也可以避免依靠海量數(shù)據(jù)和海量算力造成的資源浪費。

ADAS域架構(gòu)多傳感器融合技術(shù)


多傳感器同步問題


圖像事件系統(tǒng)能解決視覺識別的大部分算法,但是,它也存在一些局限性。除了傳統(tǒng)的圖像算法,激光雷達、毫米波雷達、超聲波雷達也越來越多地被用于ADAS。隨著ADAS的智能化要求的不斷提高,自動駕駛系統(tǒng)需要采用多個不同類型的傳感器協(xié)同處理的方式實現(xiàn)。


能源危機下輔助駕駛算力技術(shù)路線展望

圖3 多傳感器融合面臨時間延遲的挑戰(zhàn)


各傳感器采集數(shù)據(jù),然后通過總線發(fā)送給域控制器,存在一定程度的延時,并且,各傳感器延時的時長不固定。為了提高自動駕駛的傳感器之間的深度融合、決策規(guī)劃和融合定位等性能,自動駕駛高級域控制器與其關(guān)聯(lián)的傳感器均需要做時間同步。


常用的時間同步主要包括:GPS同步、SyncE、NTP和PTP(IEEE 1588)時間同步。對于ADAS來說,主要采用的是時間敏感網(wǎng)絡TSN(Time Sensitive Network)技術(shù)。


能源危機下輔助駕駛算力技術(shù)路線展望

圖4 時間敏網(wǎng)絡技術(shù)TSN原理


TSN最初來源于音視頻領域Ethernet AVB的應用需求,用于解決音視頻網(wǎng)絡的高帶寬、高實時性、和高傳輸質(zhì)量的需求。TSN的核心原理是基于時間流量調(diào)度和管理,通過TSN網(wǎng)絡中的時間感知整形器TAS(Time Aware Shaper)的調(diào)度來實現(xiàn)的。


能源危機下輔助駕駛算力技術(shù)路線展望

圖5 采用鎖相環(huán)技術(shù)實現(xiàn)時鐘頻率相位鎖定


TSN可以比較精確的計算出傳輸線的時延問題。但是,如果主從設備采用自己獨立的時鐘,還會存在頻偏問題,這就需要采用精度非常高的晶振來實現(xiàn)傳輸功能。基于成本等綜合考慮,通常采用OCXO/VCXO+PLL的方式實現(xiàn)從設備時鐘的頻率鎖定,與主時鐘實現(xiàn)頻率同步。


在ADAS應用中,采用TSN結(jié)合OCXO+鎖相環(huán)的方式,就可以實現(xiàn)各傳感單元和GPU/FPGA的時間同步,消除累計誤差,實現(xiàn)時鐘源的統(tǒng)一和多傳感器完全融合。


傳感器高速數(shù)據(jù)交換問題


圖像事件系統(tǒng)含有海量數(shù)據(jù),要滿足多傳感器深度融合,這些數(shù)據(jù)就必須要在極短時間完成信息交換。受流線型處理器啟發(fā),人們一直采用獨立于處理器的32位或64位局部總線。該總線最高工作頻率為33MHz/66MHz,峰值速度達533MB/s。這種總線被稱為外設互聯(lián)標準總線(PCI總線)。


能源危機下輔助駕駛算力技術(shù)路線展望

圖6 PCI總線架構(gòu)框圖


后來,在PCI總線的基礎上,又衍生出PCI-X總線協(xié)議,其工作頻率提高到133MHz,峰值帶寬達到1064MB/s。再后來,又發(fā)展到PCI-X 2.0。


PCI總線在發(fā)展到PCI-X 2.0之后,傳輸速率很難做進一步的提升。這是因為,時鐘和數(shù)據(jù)信號之間的傳輸線寄生電感形成串擾,嚴重影響數(shù)據(jù)信號的波形,很容易對采樣信號形成誤判,影響通信效率。


能源危機下輔助駕駛算力技術(shù)路線展望

圖7 高速數(shù)字信號引發(fā)的碼間干擾


數(shù)字信號在高速傳輸?shù)臅r候,很容易產(chǎn)生天線效應,向周圍輻射,產(chǎn)生電磁感應,形成碼間干擾。碼間干擾,包括感染源信號和被干擾信號。這導致傳輸信號判決門檻的不斷提高。為了提高抗碼間干擾問題,有人提出采用差分傳輸模型。


能源危機下輔助駕駛算力技術(shù)路線展望

圖8 差分信號消除碼間干擾


這種差分信號傳輸方法,后來經(jīng)過一系列演變和改進,發(fā)展成后來的USB和PCIe傳輸總線,PCIe總線經(jīng)過迭代,現(xiàn)在已經(jīng)演進到現(xiàn)在都PCIe5.0,根據(jù)最新消息,PCIe剛剛已經(jīng)發(fā)布PCIe6.0和PCIe7.0規(guī)范。


能源危機下輔助駕駛算力技術(shù)路線展望

圖9 PCIe總線技術(shù)提升傳輸速率


不同技術(shù)算力的功耗對比


基于SRAM工藝的動態(tài)功耗


目前,市面上大部分視覺算法處理系統(tǒng)都是基于GPU和FPGA實現(xiàn)的,這些處理器大部分都是基于靜態(tài)隨機存儲器工藝為核心單元。


能源危機下輔助駕駛算力技術(shù)路線展望

圖10 SRAM單元內(nèi)部架構(gòu)


SRAM單元用六只N溝道CMOS管組成,其中四個CMOS管組成基本RS觸發(fā)器,用于記憶二進制代碼,另外兩個做門控開關(guān),控制觸發(fā)器和位線。


能源危機下輔助駕駛算力技術(shù)路線展望

圖11 SRAM架構(gòu)動態(tài)功耗


由于SRAM的上管和下管都是工作在深度飽和狀態(tài)。所以,CMOS反相器從一種穩(wěn)定工作狀態(tài)轉(zhuǎn)變到另一種穩(wěn)定工作狀態(tài)時,會出現(xiàn)上下管同時導通的情況。此時,CMOS的內(nèi)阻非常小,此時對應的電流會非常大,所以,產(chǎn)生的動態(tài)功耗非常大。


基于Flash工藝的動態(tài)功耗


除了基于CMOS的SRAM處理器之外,Excelpoint世健的工程師Wolfe Yu介紹了Microchip推出的一種基于疊柵MOS的Flash架構(gòu)FPGA處理器。


能源危機下輔助駕駛算力技術(shù)路線展望

圖12 Flash架構(gòu)FPGA與SRAM架構(gòu)FPGA的差別


Flash架構(gòu)的FPGA最大的一個特點,工作點是靜態(tài)的,動態(tài)切換也不會出現(xiàn)大的電流波動,可以節(jié)約高達50%的功率損耗。Wolfe表示Microchip最新PolarFire與同類器件28nm產(chǎn)品相比,其算力能做到其他器件2.6 倍GOPS/W。


Microchip基于ADAS技術(shù)一攬子解決方案


在政策、互聯(lián)網(wǎng)跨界競爭、消費者內(nèi)在需求等因素驅(qū)動下,ADAS滲透率將快速提升。也有一些低端車型,也開始搭載部分ADAS功能,提升賣點。


Microchip基于時間敏感網(wǎng)絡解決方案


Microchip推出LAN937X系列TSN交換器件。作為業(yè)界符合IEEE 802.1AS標準的功能的交換解決方案,可實現(xiàn)更低延遲的數(shù)據(jù)流量和更高的時鐘精度。下一步,Microchip還會推出集成1000 BASE TI PHY的LAN969X系列產(chǎn)品。

TSN可以實現(xiàn)網(wǎng)絡傳輸延遲,但是,由于時鐘晶體存在頻偏差異,可能引發(fā)不同節(jié)點之間的頻率誤差,為了解決頻偏問題,人們通常會在節(jié)點中,采用PLL鎖相環(huán)和VCXO來鎖定時鐘頻率。同時,為了更進一步同步GPS的1PPS時鐘,還需要同步1PPS時鐘。Microchip的ZL307XX系列集成5個PLL ,支持1PPS,SYNCE。滿足大部分以太網(wǎng)時間同步要求。目前,Microchip已經(jīng)和部分車企展開合作,開始評估Microchip的時鐘解決方案。


能源危機下輔助駕駛算力技術(shù)路線展望

圖13 Microchip TSN解決方案


LAN93XX搭配1000BASE-T1 PHY LAN887X,配合同步數(shù)字鎖相環(huán) ZL307XX的精確計時的IEEE 1588v2和IEEE 802.1AS-2020、用于多傳感器時間同步,符合IEEE P802.1Qci、IEEE P802.1Qav等,可以滿足ADAS實時聯(lián)網(wǎng)的需求。針對低端市場,Microchip的LAN937X配合100BASE-T1 LAN8770,也可以滿足客戶需求。


Microchip首款車用PCIe交換機介紹


2022年2月,Microchip宣布推出市場上首款汽車級認證的PCIe交換機PM430XX/PM440XX。新發(fā)布的PFX、PSX和PAX交換機解決方案為ADAS提供了尖端的計算互連能力,第4代PCIe交換機提供高速互連,支持ADAS架構(gòu)中的分布式實時安全關(guān)鍵數(shù)據(jù)處理。


能源危機下輔助駕駛算力技術(shù)路線展望

圖14 Microchip PCIe SWITCH解決方案


Microchip基于FLASH工藝的低功耗FPGA介紹


因為Microchip所采用Flash工藝這一獨特的工藝制程,其功耗最多只有相同制式的FPGA的50%。


在ADAS機器視覺算法應用中,采用Microchip的FPGA做攝像頭前端采樣、預處理,圖像拼接等應用中,有著很好的表現(xiàn)。


Microchip帶功能安全的PolarFire FPGA系列內(nèi)置安全加密認證、可以保護設計、數(shù)據(jù)、網(wǎng)絡不受攻擊,F(xiàn)lash自帶SEU免疫性能的FPGA,是數(shù)據(jù)中心、工業(yè)、汽車和航空航天應用的理想之選。


能源危機下輔助駕駛算力技術(shù)路線展望

圖15 Microchip基于Flash工藝FPGA與友商的功耗比較


除此之外,Microchip集成功能安全的MCU、DCDC、USB HUB、AES加密芯片,以及諸如CAN、LIN總線等,也是ADAS和汽車行業(yè)應用的主流方案。針對Microchip基于ADAS技術(shù)一攬子解決方案,Excelpoint世健都提供相應的技術(shù)支持和指導,降低視覺算法算力的功耗,提高效率,助力自動駕駛技術(shù)發(fā)展。

(作者:世健)


免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。



推薦閱讀:

橋感應加熱主電路拓撲結(jié)構(gòu)及控制原理

單片機端口輸入輸出阻抗

IGBT柵極驅(qū)動設計,關(guān)鍵元件該怎么選?

邊緣傳感器分析的創(chuàng)新

面向移動機器人的無線充電技術(shù)實現(xiàn)工業(yè)4.0

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉