時(shí)鐘高次諧波為何超標(biāo)以及其解決辦法
發(fā)布時(shí)間:2020-12-17 責(zé)任編輯:lina
【導(dǎo)讀】時(shí)鐘是電磁干擾能量的主要來(lái)源之一,隨著系統(tǒng)設(shè)計(jì)復(fù)雜性和集成度的大規(guī)模提高,電子系統(tǒng)的時(shí)鐘頻率越來(lái)越高,處理的難度也越來(lái)越大,下圖是常見(jiàn)的時(shí)鐘超標(biāo)測(cè)試示意圖。
一、引言
時(shí)鐘是電磁干擾能量的主要來(lái)源之一,隨著系統(tǒng)設(shè)計(jì)復(fù)雜性和集成度的大規(guī)模提高,電子系統(tǒng)的時(shí)鐘頻率越來(lái)越高,處理的難度也越來(lái)越大,下圖是常見(jiàn)的時(shí)鐘超標(biāo)測(cè)試示意圖。
二、案例分析
為什么有些時(shí)鐘的高次諧波會(huì)很容易超標(biāo)?
分析:
周期信號(hào)由于每個(gè)取樣段的頻譜都是一樣的,所以他的頻譜呈離散形,但在各個(gè)頻點(diǎn)上呈強(qiáng)大的特點(diǎn),通常成為窄帶噪聲。而非周期信號(hào),由于其每個(gè)取樣段的頻譜不一樣,所以其頻譜很寬,而且強(qiáng)度較弱,通常被稱為寬帶噪聲。然而在一般系統(tǒng)中,時(shí)鐘信號(hào)為周期信號(hào),而數(shù)據(jù)和地址線通常為非周期信號(hào),因此造成系統(tǒng)輻射超標(biāo)的通常為時(shí)鐘信號(hào)。
如何解決時(shí)鐘及其諧波超標(biāo)問(wèn)題呢?
(一)抑制措施1—使用濾波電路
在時(shí)鐘信號(hào)線靠近輻射源頭增加濾波電路,通過(guò)RC時(shí)間常數(shù)減緩信號(hào)的邊沿轉(zhuǎn)換率;通常采用RC濾波電路,為了得到最理想的端接和防止反射,電阻應(yīng)該盡量的靠近源端,電容最好放置電阻右邊,如下圖所示:
存在問(wèn)題:
(1)電感和電容存在寄生參數(shù),高頻效果不理想;
(2)時(shí)鐘頻率越來(lái)越高,RC濾波效果非常有限;
(二)抑制措施2—屏蔽線纜
分析:
屏蔽線纜是非常有效的措施之一,屏蔽層既能直接遮擋了電纜中差模信號(hào)回路的差模輻射,也能為共模電流提供一個(gè)返回共模噪聲源的路徑,減小共模電流的回路面積,但是屏蔽線纜也存在以下問(wèn)題,
(1)采用導(dǎo)電布屏蔽工藝復(fù)雜,人工成本高,效果不夠理想;
(2)采用多層屏蔽FPC排線,成本高,柔韌性不好;
(3)采用微同軸屏蔽效果很好,但是成本很高;
以前傳統(tǒng)的諸如屏蔽,濾波等EMI改善措施的應(yīng)用已變得越來(lái)越困難,這促使設(shè)計(jì)工程師去探索更可行有效的方法來(lái)減少時(shí)鐘能量發(fā)射,而擴(kuò)頻時(shí)鐘的適時(shí)出現(xiàn)則恰如其分的解決了這個(gè)問(wèn)題,并從源頭上——系統(tǒng)時(shí)鐘處控制和減少了EMI發(fā)射強(qiáng)度。目前,時(shí)鐘擴(kuò)展頻譜技術(shù)被廣泛使用在圖像采集、圖像顯示及汽車(chē)電子等行業(yè)。
(二)抑制措施3—展頻
1、在屏?xí)r鐘或攝像頭時(shí)鐘增加展頻IC
2、應(yīng)用效果對(duì)比測(cè)試圖
3、展頻技術(shù)原理
通過(guò)對(duì)尖峰時(shí)鐘進(jìn)行調(diào)制處理,使其從一個(gè)窄帶時(shí)鐘變?yōu)橐粋€(gè)具有邊帶的頻譜,將尖峰能量分散到展頻區(qū)域的多個(gè)頻率段,從而達(dá)到降低尖峰能量,抑制EMI的效果。
4、展頻的形態(tài)——展頻IC和展頻晶振兩種形態(tài)
5、展頻技術(shù)的優(yōu)勢(shì)
(1)在EMI源處抑制EMI,抑制效果好;
(2)PCB板級(jí)方案,便于批量生產(chǎn)和電路標(biāo)準(zhǔn)化;
(3)縮短研發(fā)周期,減少屏蔽,過(guò)濾,簡(jiǎn)化工藝,減少人工成本;
(4)展頻晶振體積小,在車(chē)載攝像頭、內(nèi)窺鏡等體積有要求產(chǎn)品實(shí)用度高。
6、實(shí)際成功應(yīng)用案例
(1)圖像采集類時(shí)鐘信號(hào),如攝像頭時(shí)鐘,指紋頭等;
(2)圖像顯示類時(shí)鐘信號(hào),如屏?xí)r鐘;
(3)晶振、DDR、SD等PCB內(nèi)部時(shí)鐘
三、總結(jié)
時(shí)鐘擴(kuò)展頻譜技術(shù)在抑制時(shí)鐘EMI上的應(yīng)用,可以在一定程度上簡(jiǎn)化EMC對(duì)策,降低昂貴的屏蔽材料成本,增強(qiáng)產(chǎn)品大批量生產(chǎn)的一致性,因此在產(chǎn)品的設(shè)計(jì)初期做EMC設(shè)計(jì)規(guī)劃時(shí),應(yīng)考慮做好展頻電路的兼容設(shè)計(jì),以防產(chǎn)品在上市前因EMI整改困難而焦頭爛額,錯(cuò)失最好的市場(chǎng)機(jī)會(huì)!
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車(chē)規(guī)級(jí)分流器以及匹配的評(píng)估板
- Quobly與意法半導(dǎo)體攜手, 加快量子處理器制造進(jìn)程,實(shí)現(xiàn)大型量子計(jì)算解決方案
- DigiKey和MediaTek強(qiáng)強(qiáng)聯(lián)合,開(kāi)啟物聯(lián)網(wǎng)邊緣AI和連接功能新篇章
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索