借助差分接口改善射頻收發(fā)器設(shè)計(jì)性能
發(fā)布時(shí)間:2020-03-13 來(lái)源:Mingming Zhao 責(zé)任編輯:wenwei
【導(dǎo)讀】傳統(tǒng)收發(fā)器設(shè)計(jì)中,50 Ω單端接口廣泛用于射頻和中頻電路。當(dāng)電路進(jìn)行互連時(shí),應(yīng)全部具有匹配的50 Ω輸出和輸入阻抗。然而在現(xiàn)代收發(fā)器設(shè)計(jì)中,差分接口常用在中頻電路中以獲得更好的性能,但實(shí)際設(shè)計(jì)過(guò)程中,工程師需要處理幾個(gè)常見問題,包括阻抗匹配、共模電壓匹配以及復(fù)雜的增益計(jì)算。了解發(fā)射機(jī)和接收機(jī)中的差分電路對(duì)優(yōu)化增益匹配和系統(tǒng)性能很有幫助。
差分接口優(yōu)勢(shì)
差分接口有三大主要優(yōu)勢(shì)。首先,差分接口可抑制外部干擾和接地噪聲。其次,它可以抑制偶次階輸出失真。這對(duì)于零中頻(ZIF)接收機(jī)非常重要,因?yàn)槌霈F(xiàn)在低頻信號(hào)中的偶次階成分無(wú)法濾除。第三,輸出電壓可達(dá)到單端輸出的兩倍,從而將給定電源上的輸出線性度提高6 dB。
本文論述三種情況下的接口解決方案:ZIF接收機(jī)、超外差式接收機(jī)和發(fā)射機(jī)。這三種架構(gòu)廣泛用于射頻拉遠(yuǎn)單元(RRU)、數(shù)字直放站和其他無(wú)線測(cè)試儀器中。
ZIF接收機(jī)接口設(shè)計(jì)和增益計(jì)算
在零中頻(ZIF)接收機(jī)設(shè)計(jì)中,IF信號(hào)是復(fù)信號(hào),直流和低頻率信號(hào)來(lái)提供有用信息。典型解調(diào)器在驅(qū)動(dòng)200 Ω至450 Ω負(fù)載時(shí)可提供最佳性能,同時(shí)ADC驅(qū)動(dòng)器的輸入阻抗一般并非50 Ω,因此設(shè)計(jì)系統(tǒng)時(shí)采用直流耦合很重要也很困難。
圖1顯示了一個(gè)ZIF接收機(jī)配置,它使用兩個(gè)低噪聲放大器(LNA) ADL5523一個(gè)400MHz至6000MHz正交I/Q解調(diào)器ADL5380 一個(gè)作為本振(LO)的寬帶頻率合成器ADF4350以及一個(gè)雙通道數(shù)字可編程可變?cè)鲆娣糯笃?VGA)AD8366 表1顯示了相關(guān)ADL5380接口和增益參數(shù)。
圖1. ZIF接收機(jī)框圖
表1.ADL5380接口和增益參數(shù)
與具有217 Ω差分輸入阻抗的AD8366接口時(shí),ADL5380具有5.9 dB電壓增益和–0.5 dB功率增益[5.9 dB – 10log (217/50)]。為獲得最佳性能,將ADL5380 ADJ引腳連接至VS,使ADL5380與AD8366間的共模電壓設(shè)置為2.5 V。在ADL5380與AD8366間放置具有0.5 dB插入損耗的差分四階巴特沃茲低通濾波器,以便抑制噪聲和高頻干擾成分。雖然濾波器會(huì)輸入和輸出阻抗并不匹配,但在基帶頻率下這些不匹配是可以忽略的。
表2.AD8366接口和增益參數(shù)
AD8366的共模輸出電壓可設(shè)置為2.5 V;當(dāng)VCM保持浮空時(shí)其線性度最佳。遺憾的是,AD6642在0.9 V共模輸入電壓(0.5 × AVDD)下具有最佳性能。由于AD8366的共模輸出電壓必須介于1.6 V與3 V之間,因此AD6642 VCM和AD8366 VCM引腳無(wú)法直接連接,必須使用電阻將AD8366共模輸出電壓分壓至0.9 V。
為獲得最佳性能,AD8366應(yīng)驅(qū)動(dòng)200Ω載。要實(shí)現(xiàn)所需的共模電平和阻抗匹配,可在AD8366后添加63 Ω串聯(lián)電阻和39 Ω并聯(lián)電阻。這一電阻網(wǎng)絡(luò)將使信號(hào)功率衰減4 dB。
AD8366的輸出擺幅可達(dá)6 V p-p,但電阻網(wǎng)絡(luò)提供的4 dB衰減使AD6642得到的電壓限于2.3 V p-p,避免了較大干擾尖峰或增益的失控對(duì)ADC帶來(lái)?yè)p害。
在AD8366與AD6642間放置具有1.5 dB插入損耗的差分六階巴特沃茲低通濾波器,可以濾除高頻干擾成分。I或者Q通道的完整差分接口如圖2所示。
圖2.ZIF接收機(jī)接口框圖和仿真濾波器特性
為保留足夠的余量來(lái)應(yīng)付整個(gè)溫度范圍內(nèi)的增益變化,AD8366在正常模式下的增益設(shè)置為16 dB。
采用這種配置,整個(gè)信號(hào)鏈的增益如下:
5.9 dB – 10log (217/50) – 0.5 dB + 16 dB – 10log (200/217) – 1.5 dB – 4 dB= 9.9 dB.
在ADL5380之前以級(jí)聯(lián)方式插入的兩個(gè)LNA實(shí)現(xiàn)了32 dB的射頻增益。由于模數(shù)轉(zhuǎn)換器被配置為2 V p-p滿幅擺幅和78 Ω等效輸入阻抗,它可以接收最大–34 dBm的單音RF輸入信號(hào)。如果輸入信號(hào)是具有10 dB峰均比(PAR)的調(diào)制信號(hào),在不改變VGA設(shè)置情況下,接收機(jī)可以接收的最大輸入信號(hào)為-41dBm。
換言之,電壓增益可用于計(jì)算信號(hào)鏈鏈路預(yù)算。當(dāng)輸入端口阻抗等于輸出端口阻抗時(shí),電壓增益等于功率增益。整個(gè)信號(hào)鏈的電壓增益為:
32 dB + 5.9 dB – 0.5 dB + 16 dB – 1.5 dB – 8 dB = 43.9 dB.
對(duì)于單音信號(hào)輸入,要獲得2 V p-p擺幅范圍,正確的輸入功率為:
8 dBm – 43.9 dB + 10log (78/50) = –34 dBm.
用電壓增益計(jì)算的結(jié)果與功率增益計(jì)算出結(jié)果是相同的。
某些應(yīng)用中,ADL5380可能需要直接連接至AD6642,這種情況下,可為AD6642差分輸入添加500 Ω電阻以改善匹配。ADL5380電壓增益為6.9 dB,且具有與AD8366相同的共模問題。所以應(yīng)使用160 Ω串聯(lián)電阻和100 Ω并聯(lián)電阻來(lái)實(shí)現(xiàn)500 Ω負(fù)載和所需的共模電壓。同樣,電阻網(wǎng)絡(luò)可將電壓增益衰減8 dB(功率則衰減4 dB)。
在ADL5380與AD6642間放置具有1.5 dB插入損耗的低通濾波器,從而濾除干擾頻率成分。整個(gè)鏈路的輸入阻抗為50 Ω,輸出阻抗為500 Ω。采用這種配置,整個(gè)信號(hào)鏈的增益如下:
6.9 dB – 10log (500/50) – 1.5 dB – 4 dB = –8.6 dB.
超外差式接收機(jī)接口設(shè)計(jì)和增益計(jì)算
超外差式接收機(jī)設(shè)計(jì)中,系統(tǒng)使用交流耦合,因此設(shè)計(jì)超外差接收機(jī)電路時(shí)不必考慮直流共模電壓匹配。
許多混頻器,例如ADL535x和ADL580x,具有200 Ω的差分輸出阻抗,因此不同輸出阻抗呈現(xiàn)不同功率增益和電壓增益。
圖3顯示了超外差式接收機(jī)的一個(gè)通道,該器件采用以下元件:低噪聲放大器ADL5523 具有LO緩沖器、IF放大器和RF巴倫的雙通道平衡混頻器ADL5356 帶通或者低通濾波器;雙通道、超低失真IF VGAAD8376 另一個(gè)低通或者帶通抗混疊濾波器;雙通道IF接收機(jī)AD6642
圖3.超外差式接收機(jī)框圖(僅顯示一個(gè)通道)
該設(shè)計(jì)使用140MHz 中頻和20MHz帶寬,因此器件連接時(shí)可采用交流耦合。
AD5356在200 Ω負(fù)載下具有最佳性能,而AD8376的輸入阻抗為150 Ω。因此,為了抑制混頻器輸出雜散并提供良好的阻抗匹配,差分LC濾波器必須具有200 Ω的輸入阻抗和150 Ω的輸出阻抗。在某些應(yīng)用中,需要通過(guò)過(guò)渡帶極窄濾波器抑制頻帶外信號(hào),可使用差分SAW濾波器來(lái)實(shí)現(xiàn),但這會(huì)給接收機(jī)信號(hào)鏈引入過(guò)大的損耗和群延遲。四階差分帶通巴特沃茲濾波器可適合許多無(wú)線接收機(jī),因?yàn)榍岸薘F濾波器可以為帶外干擾提供足夠的衰減。
表3. ADL5356和AD8376接口和增益參數(shù)
AD8376的電流輸出型電路具有高輸出阻抗,因此其差分輸出需要接150 Ω電阻實(shí)現(xiàn)電壓輸出。另一個(gè)差分濾波器放置在AD8376和ADC之間,用于衰減二階和三階諧波失真成分,因此該150 Ω負(fù)載可以被分成兩部分。首先將300 Ω電阻安裝于AD8376的輸出端。另一個(gè)300 Ω電阻由兩個(gè)165 Ω電阻和ADC的3 kΩ輸入阻抗構(gòu)成。兩個(gè)165 Ω電阻同時(shí)為ADC輸入提供直流共模電壓。LC濾波器的輸入和輸出阻抗均為300 Ω。對(duì)于高中頻應(yīng)用,信號(hào)源和負(fù)載的阻抗的完美匹配是非常重要的。完整接口如圖4所示。
圖4.超外差式接收機(jī)接口框圖和濾波器仿真結(jié)果
此接收機(jī)中,混頻器之前放置一個(gè)20 dB LNA?;祛l器之后的濾波器具有2 dB插入損耗;AD8376與ADC之間的濾波器具有1.2 dB插入損耗。AD8376增益設(shè)置為14 dB,以便提供足夠的余量來(lái)應(yīng)對(duì)溫度變化。接收機(jī)的總體增益為:
20 dB + 8.2 dB – 2 dB + 14 dB – 1.2 dB = 39 dB.
為將ADC輸入電壓限制在2 V p-p以下,傳輸?shù)?50 Ω電阻(300 Ω || (165 Ω × 2) || 3 k Ω)的功率應(yīng)小于5.2 dBm。因此對(duì)于單音信號(hào),接收機(jī)最大輸入功率為–33.8 dBm。如果輸入信號(hào)是10 dB PAR調(diào)制信號(hào),使用此增益設(shè)置的最大輸入信號(hào)為–40.8 dBm。
發(fā)射機(jī)接口設(shè)計(jì)和增益計(jì)算
對(duì)于發(fā)射通道設(shè)計(jì),ZIF和超外差式架構(gòu)具有相似的接口特性,均需要在TxDAC® 與調(diào)制器間執(zhí)行直流耦合。大多數(shù)調(diào)制器的中頻輸入電路需要外部提供直流偏置;TxDAC輸出可為直流耦合模式下的調(diào)制器提供直流偏置。大多數(shù)高速DAC是電流輸出架構(gòu),因此需要外輸出電阻才能為調(diào)制器產(chǎn)生輸入電壓。
圖5顯示了超外差式或ZIF發(fā)射機(jī),該器件采用以下元件:TxDACAD9122 ,低通濾波器、正交調(diào)制器ADL537x另一個(gè)RF濾波器、頻率合成器ADF4350數(shù)字控制VGAADL5243, 功率放大器、用于控制功率放大器(PA)柵極電壓的DACAD562x.
圖5.發(fā)射機(jī)框圖
對(duì)于AD9122,滿量程輸出電流可設(shè)置在8.66 mA與31.66 mA之間。對(duì)于大于20 mA的滿量程電流,無(wú)雜散動(dòng)態(tài)范圍(SFDR)會(huì)變差,但DAC的輸出功率和ACPR也隨著滿量程電流降低而減小。適當(dāng)折衷的方案是將20 mA交流電流疊加于10 mA直流電平上,得到0 mA至20 mA的電流輸出。
表4.AD9122和ADL5372接口和增益參數(shù)
ADL5372的輸入電路需要0.5 V共模電壓,由流經(jīng)50 Ω電阻的10 mA直流電流提供。0 mA至20 mA交流電流由兩個(gè)50 Ω電阻和一個(gè)100 Ω電阻共享。因此調(diào)制器輸入的交流電壓為20 mA × ((50 × 2) || 100) = 1 V p-p。TxDAC與調(diào)制器之間的濾波器用于去除高頻雜散和諧波成分。濾波器的輸入和輸出阻抗為100 Ω。完整接口如圖6所示。
圖6.直流耦合發(fā)射機(jī)IF接口框圖和濾波器仿真結(jié)果
采用50 Ω輸出時(shí),ADL5372的電壓轉(zhuǎn)換增益為0.2 dBm。使用13 dB PAR調(diào)制器信號(hào)時(shí),平均功率必須至少減小15 dB,以便適應(yīng)Tx數(shù)字預(yù)失真過(guò)程。ADL5372具有1 V p-p單音輸入時(shí),平均調(diào)制器輸出功率為7.1 dBm – 2.9 dB = 4.2 dBm。如果考慮低通濾波器的2.2 dB插入損耗,平均輸出功率為4.2 dBm – 2.2 dB = 2 dBm。這種狀態(tài)下,調(diào)制器輸出端平均輸出功率為-10dBm。
為了保證發(fā)射鏈路提供11 dBm平均發(fā)射功率,Tx信號(hào)鏈內(nèi)后端需要具有26 dBm 的P-1dB的PA驅(qū)動(dòng)器。如果需要2 dB插入損耗的RF濾波器以抑制LO饋通和調(diào)制器邊帶輸出,那么增益模塊和PA驅(qū)動(dòng)器必須提供23 dB的總增益。針對(duì)此應(yīng)用,建議使用具有集成式增益模塊、數(shù)字控制衰減器和PA驅(qū)動(dòng)器的VGA ADL5243。
結(jié)束語(yǔ)
本文介紹了ZIF和超外差式接收機(jī)解調(diào)器、IF VGA、混頻器和ADC模擬端口差分設(shè)計(jì),以及TxDAC與FMOD之間的發(fā)射機(jī)差分接口,其中均使用ADI器件作為信號(hào)鏈有源部分。另外還提供了設(shè)計(jì)用于這些電路的應(yīng)用濾波器的增益計(jì)算和仿真結(jié)果。本振差分接口設(shè)計(jì)以及其他相關(guān)設(shè)計(jì)詳情請(qǐng)參閱以下參考文獻(xiàn)。
參考電路
Circuit Note CN-0018, Interfacing the ADL5372 I/Q Modulator to the AD9779A Dual-Channel, 1 GSPS High-Speed DAC.
Circuit Note CN-0134, Broadband Low Error Vector Magnitude (EVM) Direct Conversion Transmitter.
Calvo, Carlos. “The differential-signal advantage for communications system design.” EE Times.
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- Quobly與意法半導(dǎo)體攜手, 加快量子處理器制造進(jìn)程,實(shí)現(xiàn)大型量子計(jì)算解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖