在高中頻ADC應(yīng)用中,如何改善增益平坦度而又不影響動(dòng)態(tài)性能?
發(fā)布時(shí)間:2017-06-20 責(zé)任編輯:wenwei
【導(dǎo)讀】本文指導(dǎo)用戶選擇適當(dāng)?shù)?a target="_blank" style="text-decoration:none;" >變壓器,用于高速模/數(shù)轉(zhuǎn)換器(ADC)前端的信號(hào)調(diào)理。本文還闡述了如何合理選擇無源元件,在較寬的輸入頻率范圍內(nèi)改善增益的平坦度,而且不會(huì)犧牲ADC的動(dòng)態(tài)特性。文中給出了變壓器原級(jí)和次級(jí)匹配的差別,詳細(xì)描述了中等頻率至高頻應(yīng)用中高速ADC設(shè)計(jì)所面臨的增益平坦度與動(dòng)態(tài)范圍的沖突問題。
本文討論一種將單端信號(hào)(通常來自經(jīng)過緩沖的解調(diào)電路)轉(zhuǎn)換成差分信號(hào)(以便饋入高中頻ADC)的電路。這些電路使用一個(gè)寬帶變壓器、匹配電阻及濾波電容來完成此任務(wù)。還討論了變壓器的最優(yōu)匹配方法,以便保持高速ADC的高動(dòng)態(tài)范圍,同時(shí)又使增益突起和帶寬降低效應(yīng)減至最小。
用200MHz變壓器來實(shí)現(xiàn)單端至差分轉(zhuǎn)換
我們選擇MAX1449來示例及分析兩種可能的輸入配置。圖1給出一種采用寬帶變壓器的典型交流耦合單端至差分轉(zhuǎn)換設(shè)計(jì)方案,其中變壓器采用Mini-Circuits®公司的T1-IT-KK81 (200MHz),采用50Ω一次側(cè)匹配及25Ω/22pF濾波網(wǎng)絡(luò)。在此結(jié)構(gòu)中,來自50Ω阻抗信號(hào)源的單端信號(hào)通過變壓器后被轉(zhuǎn)換成差分信號(hào)。一次側(cè)的50Ω匹配使信號(hào)源和變壓器之間有良好的匹配。但這同時(shí)也意味著變壓器一次側(cè)和二次側(cè)之間的失配。從一次側(cè)看過去是一個(gè)組合的25Ω阻抗,而二次側(cè)上卻是一個(gè)很大的失配阻抗,即20kΩ的ADC輸入電阻并聯(lián)22pF電容。這將影響輸入網(wǎng)絡(luò)的頻率相應(yīng),并將最終影響轉(zhuǎn)換器的頻率響應(yīng)。變壓器的標(biāo)稱漏感在25nH至100nH范圍內(nèi)。再加上22pF的輸入濾波電容,將產(chǎn)生一個(gè)位于110MHz至215MHz之間的干擾諧振頻率
在這個(gè)頻率附近,將產(chǎn)生一個(gè)惱人的增益突起。
圖1. 利用200MHz變壓器將來自50Ω信號(hào)源的單端信號(hào)轉(zhuǎn)換成差分信號(hào)。
用800MHz變壓器來實(shí)現(xiàn)單端至差分轉(zhuǎn)換
圖2給出一種與圖1類似的交流耦合配置,但這次是采用性能更好的寬帶變壓器,例如Mini-Circuits公司的ADT1-1WT (800MHz),采用一次側(cè)匹配和25Ω/10pF濾波網(wǎng)絡(luò)。盡管這種變壓器具有75Ω的阻抗,但其較低的泄漏電感可獲得更好的頻率響應(yīng),-1dB頻率高達(dá)400MHz,與之相比T1-IT-KK81則只有50MHz。
圖2. 與圖1類似,利用變壓器將單端信號(hào)轉(zhuǎn)換成差分信號(hào),但這次是采用800MHz變壓器,因此能提供更好的性能。
變壓器—200MHz對(duì)比800MHz
圖3給出兩種匹配方案、濾波網(wǎng)絡(luò)元件與變壓器的測試結(jié)果。從圖中的兩條曲線可看出頻響特性的顯著改善。T1-IT-KK81型變壓器在90MHz至110MHz之間明顯地出現(xiàn)了一個(gè)大約0.5dB的增益突起,而ADT1-1WT型變壓器的曲線在高達(dá)300MHz的頻率范圍內(nèi)平坦度保持在0.1dB以內(nèi)。這種條件(即ADT1-1WT型變壓器、50Ω一次側(cè)匹配以及在INP與INN上接10pF輸入濾波電容)下的動(dòng)態(tài)性能仍能在 = 50MHz頻率上獲得58.4dB的SNR。雖然圖3中只給出80MHz至260MHz測試頻率下的情況(僅對(duì)ADT1-1WT型變壓器),但實(shí)驗(yàn)室測試結(jié)果證明,即使在輸入頻率遠(yuǎn)超出第8奈奎斯特區(qū)時(shí),其增益平坦度仍能保持在0.1dB以內(nèi)。
圖3. 用800MHz變壓器所獲得的增益平坦度比用200MHz變壓器所獲得增益平坦度有很大的改善。
對(duì)變壓器二次側(cè)的阻抗進(jìn)行匹配有助于進(jìn)一步提高增益平坦度。方法之一是在變壓器的二次側(cè),而非一次側(cè),進(jìn)行匹配。
特別是對(duì)于高中頻應(yīng)用,匹配阻抗的位置非常關(guān)鍵。根據(jù)對(duì)增益平坦度及動(dòng)態(tài)性能的不同要求,交流耦合輸入進(jìn)來的信號(hào)可在變壓器的任何一側(cè)進(jìn)行匹配。寬帶變壓器是一種可方便快捷地在一個(gè)較寬頻帶上將單端信號(hào)轉(zhuǎn)換成差分信號(hào)的常用器件。
一次側(cè)匹配
我們選擇MAX1124 (10位,250Msps)來示例不同的匹配方案及其對(duì)ADC增益帶寬及動(dòng)態(tài)范圍的影響。我們從一次側(cè)匹配結(jié)構(gòu)開始(圖4a),將一個(gè)50Ω阻抗的兩個(gè)分別接在變壓器的頂端/底端和中心抽頭之間的25Ω電阻上(圖5a)。后接0.1µF交流耦合電容及輸入濾波網(wǎng)絡(luò)(15Ω串聯(lián)電阻及ADC輸入阻抗)。現(xiàn)在,饋入轉(zhuǎn)換器的將是一個(gè)經(jīng)過良好平衡的二次側(cè)信號(hào)。和圖4a中的配置一樣,在INP與INN上沒有連接其他的輸入濾波電容。采用此種配置,幾乎可完全消除450MHz至550MHz頻率范圍內(nèi)的增益突起。如果需要,還可通過將15Ω隔離電阻換成30Ω來增加更多的直流衰減。盡管這種方法能使頻率響應(yīng)更加平坦,但也損失了一些帶寬(圖5b)。
圖4. 在這個(gè)一次側(cè)匹配結(jié)構(gòu)中(圖4a),變壓器一次側(cè)的良好平衡被二次側(cè)的不平衡破壞了,在450MHz和550MHz之間產(chǎn)生最大增益突起(圖4b)。
圖5. 將經(jīng)過良好平衡的二次側(cè)信號(hào)饋入轉(zhuǎn)換器(圖5a),可完全消除450MHz至550MHz范圍內(nèi)的增益突起。同時(shí)還可增加直流衰減,使頻率響應(yīng)更加平坦,不過這會(huì)損失一些帶寬(圖5b)。
結(jié)論
本文的討論表明,無源器件的正確選擇不僅在高速模數(shù)轉(zhuǎn)換器的輸入網(wǎng)絡(luò)設(shè)計(jì)中扮演著重要角色,而且正確地使用這些器件也一樣重要。例如,如果增益平坦度是系統(tǒng)設(shè)計(jì)中的一個(gè)重要因素,則須小心避免在轉(zhuǎn)換器的差分輸入上產(chǎn)生不平衡及諧振,以確保真實(shí)地再現(xiàn)其動(dòng)態(tài)性能。未使用輸入濾波電容的那兩種結(jié)構(gòu)可能會(huì)有INP及INN拾取噪聲之憂,對(duì)此問題的簡單分析表明,這會(huì)導(dǎo)致0.2dB至0.5dB的信噪比(SNR)下降。當(dāng)看重高帶寬、寬頻程內(nèi)的增益穩(wěn)定性(平坦度)以及高動(dòng)態(tài)性能時(shí),采用10位數(shù)據(jù)轉(zhuǎn)換器的大多數(shù)高中頻應(yīng)用都能接受如此小的噪聲性能下降。
本文來源于Maxim。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- Quobly與意法半導(dǎo)體攜手, 加快量子處理器制造進(jìn)程,實(shí)現(xiàn)大型量子計(jì)算解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖