你的位置:首頁 > 測試測量 > 正文

機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案

發(fā)布時間:2020-10-20 責任編輯:lina

【導讀】 益于大數(shù)據(jù)的興起以及算力的快速提升,機器學習技術在近年取得了革命性的發(fā)展。在圖像分類、語音識別、自然語言處理等機器學習任務中,數(shù)據(jù)為大小維度確定且排列有序的歐氏(Euclidean)數(shù)據(jù)。然而,越來越多的現(xiàn)實場景中,數(shù)據(jù)是以圖(Graph)這種復雜的非歐氏數(shù)據(jù)來表示的。
 
應用AchronixSpeedster7t FPGA設計高能效、可擴展的GNN加速器
 
作者:袁光(KevinYuan),Achronix資深現(xiàn)場應用工程師
 
1.概述
 
得益于大數(shù)據(jù)的興起以及算力的快速提升,機器學習技術在近年取得了革命性的發(fā)展。在圖像分類、語音識別、自然語言處理等機器學習任務中,數(shù)據(jù)為大小維度確定且排列有序的歐氏(Euclidean)數(shù)據(jù)。然而,越來越多的現(xiàn)實場景中,數(shù)據(jù)是以圖(Graph)這種復雜的非歐氏數(shù)據(jù)來表示的。Graph不但包含數(shù)據(jù),也包含數(shù)據(jù)之間的依賴關系,比如社交網(wǎng)絡、蛋白質分子結構、電商平臺客戶數(shù)據(jù)等等。數(shù)據(jù)復雜度的提升,對傳統(tǒng)的機器學習算法設計以及其實現(xiàn)技術帶來了嚴峻的挑戰(zhàn)。在此背景之下,諸多基于Graph的新型機器學習算法—GNN(圖神經(jīng)網(wǎng)絡),在學術界和產(chǎn)業(yè)界不斷的涌現(xiàn)出來。
 
GNN對算力和存儲器的要求非常高,其算法的軟件實現(xiàn)方式非常低效,所以業(yè)界對GNN的硬件加速有著非常迫切的需求。我們知道傳統(tǒng)的CNN(卷積神經(jīng)網(wǎng)絡網(wǎng)絡)硬件加速方案已經(jīng)有非常多的解決方案;但是,GNN的硬件加速尚未得到充分的討論和研究,在本文撰寫之時,Google和百度皆無法搜索到關于GNN硬件加速的中文研究。本文的撰寫動機,旨在將國外最新的GNN算法、加速技術研究、以及筆者對GNN的FPGA加速技術的探討相結合起來,以全景圖的形式展現(xiàn)給讀者。
 
2.GNN簡介
 
GNN的架構在宏觀層面有著很多與傳統(tǒng)CNN類似的地方,比如卷積層、Polling、激活函數(shù)、機器學習處理器(MLP)和FC層等等模塊,都會在GNN中得以應用。下圖展示了一個比較簡單的GNN架構。
 
機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
圖 1:典型的GNN架構(來源:https://arxiv.org/abs/1901.00596)
 
但是, GNN中的Graph數(shù)據(jù)卷積計算與傳統(tǒng)CNN中的2D卷積計算是不同的。以圖2為例,針對紅色目標節(jié)點的卷積計算,其過程如下:
 
l  Graph卷積:以鄰居函數(shù)采樣周邊節(jié)點特征并計算均值,其鄰居節(jié)點數(shù)量不確定且無序(非歐氏數(shù)據(jù))。
 
l  2D卷積:以卷積核采樣周邊節(jié)點特征并計算加權平均值,其鄰居節(jié)點數(shù)量確定且有序(歐氏數(shù)據(jù))。
 
 機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
圖 2:Graph卷積和2D卷積(來源:https://arxiv.org/abs/1901.00596)
 
3. GraphSAGE算法簡介
 
學術界已對GNN算法進行了非常多的研究討論,并提出了數(shù)目可觀的創(chuàng)新實現(xiàn)方式。其中,斯坦福大學在2017年提出的GraphSAGE是一種用于預測大型圖中動態(tài)新增未知節(jié)點類型的歸納式表征學習算法,特別針對節(jié)點數(shù)量巨大、且節(jié)點特征豐富的圖做了優(yōu)化。如下圖所示,GraphSAGE計算過程可分為三個主要步驟:
 
機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
圖3:GraphSAGE算法的視覺表述(來源:http://snap.stanford.edu/graphsage)
 
l  鄰節(jié)點采樣:用于降低復雜度,一般采樣2層,每一層采樣若干節(jié)點
 
l  聚合:用于生成目標節(jié)點的embedding,即graph的低維向量表征
 
l  預測:將embedding作為全連接層的輸入,預測目標節(jié)點d的標簽
 
為了在FPGA中實現(xiàn)GraphSAGE算法加速,我們需要知悉其數(shù)學模型,以便將算法映射到不同的邏輯模塊中。下圖所示的代碼闡述了本算法的數(shù)學過程。
 
 機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
 圖 4:GraphSAGE算法的數(shù)學模型(來源:http://snap.stanford.edu/graphsage)
 
對于每一個待處理的目標節(jié)點xv,GraphSAGE執(zhí)行下列操作:
1)通過鄰居采樣函數(shù)N(v),采樣子圖(subgraph)中的節(jié)點
2)聚合被采樣的鄰節(jié)點特征,聚合函數(shù)可以為mean()、lstm()或者polling()等
3)將聚合結果與上一次迭代的輸出表征合并,并以Wk做卷積
4)卷積結果做非線性處理
5)迭代若干次以結束當前第k層所有鄰節(jié)點的處理
6)將第k層迭代結果做歸一化處理
7)迭代若干次以結束所有K層采樣深度的處理
8)最終迭代結果zv即為輸入節(jié)點xv的嵌入(embedding)
 
4.GNN加速器設計挑戰(zhàn)
 
GNN的算法中涉及到大量的矩陣計算和內存訪問操作,在傳統(tǒng)的x86架構的服務器上運行此算法是非常低效的,表現(xiàn)在速度慢,能耗高等方面。
 
新型GPU的應用,可以為GNN的運算速度和能效比帶來顯著收益。然而GPU內存擴展性的短板,使其無法勝任海量節(jié)點Graph的處理;GPU的指令執(zhí)行方式,也造成了計算延遲過大并且不可確定,無法勝任需要實時計算Graph的場景。
 
如上所述種種設計挑戰(zhàn)的存在,使得業(yè)界急需一種可以支持高度并發(fā)實時計算、巨大內存容量和帶寬、以及在數(shù)據(jù)中心范圍可擴展的GNN加速解決方案。
 
5.GNN加速器的FPGA設計方案
 
Achronix公司推出的Speedster7t系列高性能FPGA,專門針對數(shù)據(jù)中心和機器學習工作負載進行了優(yōu)化,消除了CPU、GPU以及傳統(tǒng) FPGA 存在的若干性能瓶頸。Speedster7t FPGA 基于臺積電的 7nm FinFET工藝,其架構采用革命性的新型 2D 片上網(wǎng)絡(NoC),獨創(chuàng)的機器學習處理器矩陣(MLP),并利用高帶寬 GDDR6 控制器、400G 以太網(wǎng)和 PCI Express Gen5 接口,在保障ASIC 級別性能的同時,為用戶提供了靈活的硬件可編程能力。下圖展示了Speedster7t1500高性能FPGA的架構。
 
機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
圖5: AchronixSpeedster7t1500高性能FPGA架構(來源:http://www.achronix.com)
 
如上所述種種特性,使得AchronixSpeedster7t1500 FPGA器件為GNN加速器設計中所面臨的各種挑戰(zhàn),提供了完美的解決方案。
 
表1:GNN設計挑戰(zhàn)與Achronix的Speedster7t1500 FPGA解決方案
機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
 
5.1GNN加速器頂層架構
 
本GNN加速器針對GraphSAGE進行設計,但其架構具有一定的通用性,可以適用于其他類似的GNN算法加速,其頂層架構如下圖所示。
 
機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
圖6: GNN加速器頂層架構(來源:Achronix原創(chuàng))
 
圖中GNNCore為算法實現(xiàn)的核心部分,其設計細節(jié)將在下文展開談論;RoCE-Lite為RDMA協(xié)議的輕量級版本,用于通過高速以太網(wǎng)進行遠程內存訪問,以支持海量節(jié)點的Graph計算,其設計細節(jié)將在本公眾號的后續(xù)文章中討論;400GE以太網(wǎng)控制器用來承載RoCE-Lite協(xié)議;GDDR6用于存放GNN處理過程中所需的高速訪問數(shù)據(jù);DDR4作為備用高容量內存,可以用于存儲相對訪問頻度較低的數(shù)據(jù),比如待預處理的Graph;PCIeGen5x16提供高速主機接口,用于與服務器軟件交互數(shù)據(jù);上述所有模塊,皆通過NoC片上網(wǎng)絡來實現(xiàn)高速互聯(lián)。
 
5.2GNNCore微架構
 
在開始討論GNNCore微架構之前,我們先回顧一下本文第3節(jié)中的GraphSAGE算法,其內層循環(huán)的聚合以及合并(包含卷積)等兩個操作占據(jù)了算法的絕大部分計算和存儲器訪問。通過研究,我們得到這兩個步驟的特征如下:
 
表2:GNN算法中聚合與合并操作對比(來源:https://arxiv.org/abs/1908.10834)
機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
 
可以看出,聚合操作與合并操作,其對計算和存儲器訪問的需求完全不同。聚合操作中涉及到對鄰節(jié)點的采樣,然而Graph屬于非歐氏數(shù)據(jù)類型,其大小維度不確定且無序,矩陣稀疏,節(jié)點位置隨機,所以存儲器訪問不規(guī)則并難以復用數(shù)據(jù);在合并操作中,其輸入數(shù)據(jù)為聚合結果(節(jié)點的低維表征)以及權重矩陣,其大小維度固定,存儲位置規(guī)則線性,對存儲器訪問不存在挑戰(zhàn),但是矩陣的計算量非常大。
 
基于以上分析,我們決定在GNNCore加速器設計中用兩種不同的硬件結構來處理聚合操作與合并操作,功能框圖如下圖所示:
 
機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案
圖7: GNNCore功能框圖(來源:Achronix原創(chuàng))
 
聚合器(Aggregator):通過SIMD(單指令多數(shù)據(jù)處理器)陣列來對Graph進行鄰居節(jié)點采樣并進行聚合操作。其中的“單指令”可以預定義為mean()均值計算,或者其他適用的聚合函數(shù);“多數(shù)據(jù)”則表示單次mean()均值計算中需要多個鄰居節(jié)點的特征數(shù)據(jù)作為輸入,而這些數(shù)據(jù)來自于子圖采樣器(SubgraphSampler);SIMD陣列通過調度器Agg Scheduler做負載均衡;子圖采樣器通過NoC從GDDR6或DDR4讀回的鄰接矩陣和節(jié)點特征數(shù)據(jù)h0v,分別緩存在AdjacentListBuffer和NodeFeature Buffer之中;聚合的結果hkN(v)存儲在AggBuffer之中。
 
合并器(Combinator):通過脈動矩陣PE來執(zhí)行聚合結果的卷積操作;卷積核為Wk權重矩陣;卷積結果通過ReLU激活函數(shù)做非線性處理,同時也存儲在PartialSumBuffer中以方便下一輪迭代。
 
合并的結果通過L2BN歸一化處理之后,即為最終的節(jié)點表征hkv。
 
在比較典型的節(jié)點分類預測應用中,該節(jié)點表征hkv可以通過一個全連接層(FC),以得到該節(jié)點的分類標簽。此過程屬于傳統(tǒng)的機器學習處理方法之一,沒有在GraphSAGE論文中體現(xiàn),此設計中也沒有包含這個功能。
 
6.結論
 
本文深入討論了GraphSAGEGNN算法的數(shù)學原理,并從多個維度分析了GNN加速器設計中的技術挑戰(zhàn)。作者通過分解問題并在架構層面逐一解決的方法,綜合運用AchronixSpeedster7t1500FPGA所提供的競爭優(yōu)勢,創(chuàng)造了一個性能極佳且高度可擴展的GNN加速解決方案。
 
 
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請電話或者郵箱聯(lián)系小編進行侵刪。
 
 
推薦閱讀:
什么是LDO線性穩(wěn)壓器的并聯(lián)?
2020中國(深圳)集成電路峰會報名啟動
中國工程院院士譚建榮將出席2020中國國際數(shù)字經(jīng)濟大會
脈沖雷達基礎知識
拿出你的小本本,記好這些ADC輸入保護的設計經(jīng)驗
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉