高速轉(zhuǎn)換器應(yīng)用指南:數(shù)字?jǐn)?shù)據(jù)輸出
發(fā)布時間:2020-11-04 來源:Jonathan Harris,ADI產(chǎn)品應(yīng)用工程師 責(zé)任編輯:wenwei
【導(dǎo)讀】設(shè)計人員有各種模數(shù)轉(zhuǎn)換器(ADC)可以選擇,數(shù)字?jǐn)?shù)據(jù)輸出類型是選擇過程中需要考慮的一項重要參數(shù)。目前,高速轉(zhuǎn)換器三種最常用的數(shù)字輸出是互補金屬氧化物半導(dǎo)體(CMOS)、低壓差分信號(LVDS)和電流模式邏輯(CML)。ADC中每種數(shù)字輸出類型都各有優(yōu)劣,設(shè)計人員應(yīng)根據(jù)特定應(yīng)用仔細(xì)考慮。這些因素取決于ADC的采樣速率和分辨率、輸出數(shù)據(jù)速率、系統(tǒng)設(shè)計的電源要求,以及其他因素。本文將討論每種輸出類型的電氣規(guī)格,及其適合特定應(yīng)用的具體特點。我們將從物理實現(xiàn)、效率以及最適合每種類型的應(yīng)用這些方面來對比這些不同類型的輸出。
CMOS數(shù)字輸出驅(qū)動器
在采樣速率低于200 MSPS的ADC中,CMOS是很常見的數(shù)字輸出。典型的CMOS驅(qū)動器由兩個晶體管(一個NMOS和一個PMOS)組成,連接在電源(VDD)和地之間,如圖1a所示。這種結(jié)構(gòu)會導(dǎo)致輸出反轉(zhuǎn),因此,可以采用圖1b所示的背對背結(jié)構(gòu)作為替代方法,避免輸出反轉(zhuǎn)。輸出為低阻抗時,CMOS輸出驅(qū)動器的輸入為高阻抗。在驅(qū)動器的輸入端,由于柵極與導(dǎo)電材料之間經(jīng)柵極氧化層隔離,兩個CMOS晶體管的柵極阻抗極高。輸入端阻抗范圍可達k?至M?級。在驅(qū)動器輸出端,阻抗由漏電流ID控制,該電流通常較小。此時,阻抗通常小于幾百?。CMOS的電平擺幅大約在VDD和地之間,因此可能會很大,具體取決于VDD幅度。
圖1.典型CMOS數(shù)字輸出驅(qū)動器
由于輸入阻抗較高,輸出阻抗較低,CMOS的優(yōu)勢之一在于通??梢杂靡粋€輸出驅(qū)動多個CMOS輸入。CMOS的另一個優(yōu)勢是低靜態(tài)電流。唯一出現(xiàn)較大電流的情況是CMOS驅(qū)動器上發(fā)生切換時。無論驅(qū)動器處于低電平(拉至地)還是高電平(拉至VDD),驅(qū)動器中的電流都極小。但是,當(dāng)驅(qū)動器從低電平切換到高電平或從高電平切換到低電平時,VDD與地之間會暫時出現(xiàn)低阻抗路徑。該瞬態(tài)電流是轉(zhuǎn)換器速度超過200 MSPS時,輸出驅(qū)動器采用其他技術(shù)的主要原因。
轉(zhuǎn)換器的每一位也都需要CMOS驅(qū)動器。如果轉(zhuǎn)換器有14位,就需要14個CMOS輸出驅(qū)動器來傳輸這些位。一般會有一個以上的轉(zhuǎn)換器置于單個封裝中,常見為八個。采用CMOS技術(shù)時,意味著數(shù)據(jù)輸出需要高達112個輸出引腳。從封裝角度來看,這不太可能實現(xiàn),而且還會產(chǎn)生高功耗,并使電路板布局變得更加復(fù)雜。為了解決這些問題,我們引入了使用LVDS的接口。
LVDS數(shù)字輸出驅(qū)動器
與CMOS技術(shù)相比,LVDS具備一些明顯優(yōu)勢。它可以在低電壓信號(約350 mV)下工作,并且為差分而非單端。低壓擺幅具有較快的切換時間,可以減少EMI問題。差分這一特性可以帶來共模抑制的好處。這意味著耦合到信號的噪聲對兩個信號路徑均為共模,大部分都可被差分接收器消除。LVDS中的阻抗必須更加嚴(yán)格控制。在LVDS中,負(fù)載阻抗應(yīng)約為100 ?,通常通過LVDS接收器上的并聯(lián)端接電阻實現(xiàn)。此外,LVDS信號還應(yīng)采用受控阻抗傳輸線進行傳輸。差分阻抗保持在100 ?時,所需的單端阻抗為50 ?。圖2所示為典型LVDS輸出驅(qū)動器。
圖2.典型LVDS輸出驅(qū)動器
如圖2中LVDS輸出驅(qū)動器拓?fù)浣Y(jié)構(gòu)所示,電路工作時輸出電源會產(chǎn)生固定的直流負(fù)載電流。這可以避免輸出邏輯狀態(tài)躍遷時典型CMOS輸出驅(qū)動器中出現(xiàn)的電流尖峰。電路中的標(biāo)稱源電流/吸電流設(shè)為3.5 mA,使得端接電阻100 ?時典型輸出電壓擺幅為350 mV。電路的共模電平通常設(shè)為1.2 V,兼容3.3 V、2.5V和1.8 V電源電壓。
有兩種書面標(biāo)準(zhǔn)可用來定義LVDS接口。最常用的標(biāo)準(zhǔn)是ANSI/TIA/EIA-644規(guī)格,標(biāo)題為《低壓差分信號(LVDS)接口電路的電氣特性》。另一種是IEEE標(biāo)準(zhǔn)1596.3,標(biāo)題為《可擴展一致性接口(SCI)的低壓差分信號IEEE標(biāo)準(zhǔn)》。
LVDS需要特別注意信號路由的物理布局,但在采樣速率達到200 MSPS或更高時可以為轉(zhuǎn)換器提供許多優(yōu)勢。LVDS的恒定電流使得可以支持許多輸出,無需CMOS要求的大量電流吸取。此外,LVDS還能以雙倍數(shù)據(jù)速率(DDR)模式工作,其中兩個數(shù)據(jù)位可以通過同一個LVDS輸出驅(qū)動器。與CMOS相比,可以減少一半的引腳數(shù)。此外,還降低了等量數(shù)據(jù)輸出的功耗。對轉(zhuǎn)換器數(shù)據(jù)輸出而言,LVDS確實相比CMOS具有諸多優(yōu)勢,但也和CMOS一樣存在一些限制。隨著轉(zhuǎn)換器分辨率的增加,LVDS接口所需的數(shù)據(jù)輸出量會變得更難針對PCB布局進行管理。另外,轉(zhuǎn)換器的采樣率最終會使接口所需的數(shù)據(jù)速率超出LVDS的能力。
CML輸出驅(qū)動器
轉(zhuǎn)換器數(shù)字輸出接口的最新趨勢是使用具有電流模式邏輯(CML)輸出驅(qū)動器的串行接口。通常,高分辨率(≥14位)、高速(≥200 Msps)和需要小型封裝與低功耗的轉(zhuǎn)換器會使用這些類型的驅(qū)動器。CML輸出驅(qū)動器用在JESD204接口,這種接口目前用于最新轉(zhuǎn)換器。采用具有JESD204接口的CML驅(qū)動器后,轉(zhuǎn)換器輸出端的數(shù)據(jù)速率可達12 Gbps(當(dāng)前版本JESD204B規(guī)格)。此外,需要的輸出引腳數(shù)也會大幅減少。時鐘內(nèi)置于8b/10b編碼數(shù)據(jù)流,因此無需傳輸獨立時鐘信號。數(shù)據(jù)輸出引腳數(shù)量也得以減少,最少只需兩個。隨著轉(zhuǎn)換器的分辨率、速度和通道數(shù)的增加,數(shù)據(jù)輸出引腳數(shù)可能會相應(yīng)調(diào)整,以滿足所需的更高吞吐量。但是,由于使用CML驅(qū)動器采用的接口通常是串行接口,引腳數(shù)的增加與CMOS或LVDS相比要少得多(在CMOS或LVDS中傳輸?shù)臄?shù)據(jù)是并行數(shù)據(jù),需要的引腳數(shù)多得多)。
CML驅(qū)動器用于串行數(shù)據(jù)接口,因此,所需引腳數(shù)要少得多。圖3所示為用于具有JESD204接口或類似數(shù)據(jù)輸出的轉(zhuǎn)換器的典型CML驅(qū)動器。該圖顯示了CML驅(qū)動器典型架構(gòu)的一般情況。其顯示可選源終端電阻和共模電壓。電路的輸入可將開關(guān)驅(qū)動至電流源,電流源則將適當(dāng)?shù)倪壿嬛凋?qū)動至兩個輸出端。
圖3.典型CML輸出驅(qū)動器
CML驅(qū)動器類似于LVDS驅(qū)動器,以恒定電流模式工作。這也使得CML驅(qū)動器在功耗方面具備一定優(yōu)勢。在恒定電流模式下工作需要較少的輸出引腳,總功耗會降低。與LVDS一樣,CML也需要負(fù)載端接、單端阻抗為50 ?的受控阻抗傳輸線路,以及100 ?的差分阻抗。驅(qū)動器本身也可能具有如圖3所示的端接,對因高帶寬信號靈敏度引起的信號反射有所幫助。對采用JESD204標(biāo)準(zhǔn)的轉(zhuǎn)換器而言,差分和共模電平均存在不同規(guī)格,具體取決于工作速度。工作速度高達6.375 Gbps,差分電平標(biāo)稱值為800 mV,共模電平約為1.0 V。在高于6.375 Gbps且低于12.5 Gbps的速度下工作時,差分電平額定值為400 mV,共模電平仍約為1.0 V。隨著轉(zhuǎn)換器速度和分辨率增加,CML輸出需要合適類型的驅(qū)動器提供必要速度,以滿足各種應(yīng)用中轉(zhuǎn)換器的技術(shù)需求。
數(shù)字時序——需要注意的事項
每種數(shù)字輸出驅(qū)動器都有時序關(guān)系,需要密切監(jiān)控。由于CMOS和LVDS有多種數(shù)據(jù)輸出,因此必須注意信號的路由路徑,以盡量減小偏斜。如果差別過大,可能就無法在接收器上實現(xiàn)合適的時序。此外,時鐘信號也需要通過路由傳輸,并與數(shù)據(jù)輸出保持一致。時鐘輸出和數(shù)據(jù)輸出之間的路由路徑也必須格外注意,以確保偏斜不會太大。
在采用JESD204接口的CML中,還必須注意數(shù)字輸出之間的路由路徑。需要管理的數(shù)據(jù)輸出大大減少,因此,這一任務(wù)比較容易完成,但也不能完全忽略。這種情況下,由于時鐘內(nèi)置于數(shù)據(jù)中,因此無需擔(dān)心數(shù)據(jù)輸出和時鐘輸出之間的時序偏斜。但是,必須注意,接收器中要有合適的時鐘和數(shù)據(jù)恢復(fù)(CDR)電路。
除了偏斜之外,還必須關(guān)注CMOS和LVDS的建立和保持時間。數(shù)據(jù)輸出必須在時鐘邊沿躍遷之前的充足時間內(nèi)驅(qū)動到適當(dāng)?shù)倪壿嫚顟B(tài),并且必須在時鐘邊沿躍遷之后以這種邏輯狀態(tài)維持充足時間。這可能會受到數(shù)據(jù)輸出和時鐘輸出之間偏斜的影響,因此,保持良好的時序關(guān)系非常重要。由于具有較低信號擺幅和差分信號,LVDS相比CMOS具有一定優(yōu)勢。和CMOS驅(qū)動器一樣切換邏輯狀態(tài)時,LVDS輸出驅(qū)動器無需將這樣的大信號驅(qū)動至各種不同輸出,也不會從電源吸取大量電流。因此,它在切換邏輯狀態(tài)時不太可能會出現(xiàn)問題。如果有許多CMOS驅(qū)動器同時切換,電源電壓可能會下降,將正確的邏輯值驅(qū)動到接收器時會出現(xiàn)問題。LVDS驅(qū)動器會保持在恒定電流水平,這一特別問題就不會發(fā)生。此外,由于采用了差分信號,LVDS驅(qū)動器本身對共模噪聲的耐受能力也較強。CML驅(qū)動器具有和LVDS同樣的優(yōu)勢。這些驅(qū)動器也有恒定水平的電流,但和LVDS不同的是,由于數(shù)據(jù)為串行,所需電流值較小。此外,由于也采用了差分信號,CML驅(qū)動器同樣對共模噪聲具有良好的耐受能力。
隨著轉(zhuǎn)換器技術(shù)的發(fā)展,速度和分辨率不斷增加,數(shù)字輸出驅(qū)動器也不斷演變發(fā)展,以滿足數(shù)據(jù)傳輸需求。隨著轉(zhuǎn)換器中的數(shù)字輸出接口轉(zhuǎn)換為串行數(shù)據(jù)傳輸,CML輸出越來越普及。但是,目前的設(shè)計中仍然會用到CMOS和LVDS數(shù)字輸出。每種數(shù)字輸出都有最適合的應(yīng)用。每種輸出都面臨著挑戰(zhàn),必須考慮到一些設(shè)計問題,且各有所長。在采樣速度小于200 Msps的轉(zhuǎn)換器中,CMOS仍然是一種合適的技術(shù)。當(dāng)采樣速率增加到200 MSPS以上時,與CMOS相比,LVDS在許多應(yīng)用中更加可行。為了進一步增加效率、降低功耗、減小封裝尺寸,CML驅(qū)動器可與JESD204之類的串行數(shù)據(jù)接口配合使用。
參考文獻
Bloomingdale、Cindy和Gary Hendrickson。AN-586應(yīng)用筆記:高速模數(shù)轉(zhuǎn)換器的LVDS數(shù)據(jù)輸出。ADI公司,2002年。
JEDEC標(biāo)準(zhǔn):JESD204(2006年4月)。JEDEC固態(tài)技術(shù)協(xié)會。
JEDEC標(biāo)準(zhǔn):JESD204A(2008年4月)。JEDEC固態(tài)技術(shù)協(xié)會。
JEDEC標(biāo)準(zhǔn):JESD204B(2011年7月)。JEDEC固態(tài)技術(shù)協(xié)會。
作者簡介
Jonathan Harris是ADI公司高速轉(zhuǎn)換器部門(位于北卡羅萊納州格林斯博羅)的產(chǎn)品應(yīng)用工程師。他在射頻行業(yè)從事產(chǎn)品支持工作超過7年。Jonathan擁有奧本大學(xué)電子工程碩士學(xué)位和北卡羅來納大學(xué)夏洛特分校電子工程學(xué)士學(xué)位。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護
電路圖