實(shí)現(xiàn)機(jī)器人的自主性?嵌入式模擬智能可以達(dá)到新高度!
發(fā)布時(shí)間:2019-11-27 責(zé)任編輯:wenwei
【導(dǎo)讀】要實(shí)現(xiàn)自主,機(jī)器人不僅僅只需要人工智能(AI),還需要很多傳感器、傳感器融合以及邊緣實(shí)時(shí)推理。由于深度卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)已得到公認(rèn),激光雷達(dá)對(duì)更為先進(jìn)的數(shù)據(jù)處理的需求正在把神經(jīng)網(wǎng)絡(luò)推向新的拓?fù)浣Y(jié)構(gòu),以實(shí)現(xiàn)自主。
第一個(gè)機(jī)器人在20世紀(jì)50年代末、60年代初誕生,但嚴(yán)格意義上它不算機(jī)器人,只是一臺(tái)“可編程的物品傳送設(shè)備”,它被用于移動(dòng)通用汽車公司生產(chǎn)線上壓鑄機(jī)周圍的產(chǎn)品。1954年專利的第一句話強(qiáng)調(diào)了本發(fā)明的可編程性和通用性,并且表明可編程性要求傳感器確保程序、期望軌跡或功能和實(shí)際運(yùn)動(dòng)之間的一致性。
時(shí)至今日,機(jī)器人并沒有完全偏離最初的概念:如今的機(jī)器人是可以進(jìn)行編程的。它們需要感知自身的環(huán)境,以確保所做的事情和被設(shè)定要做的事情是一致的。而且,它們需要在自身的環(huán)境中移動(dòng)。過去50-60年來所發(fā)生的變化主要是在復(fù)雜性、速度以及應(yīng)用這些基本概念的領(lǐng)域方面有所增加。
雖然第一批機(jī)器人主要用來移動(dòng)壓鑄件,但機(jī)器人之父約瑟夫·恩格爾伯格(Joseph Engelberger)深受阿西莫夫機(jī)器人第一定律的影響——機(jī)器人不得傷害人類,或看到人類受到傷害而袖手旁觀。他把機(jī)器人部署在可以保護(hù)人類的地方。保護(hù)人類也是傳感器數(shù)量不斷增加的驅(qū)動(dòng)力,特別是在協(xié)作機(jī)器人(cobots)或自動(dòng)導(dǎo)引車(AGVs)中。
是什么推動(dòng)著機(jī)器人產(chǎn)業(yè)的發(fā)展?
為了更好地理解對(duì)自主機(jī)器人的追求,讓我們回顧一下Alex Wissner-Gross的“智能定律”方程式:它是一種熵力,解釋了機(jī)器人學(xué)的發(fā)展趨勢(shì):
其中F指的是使未來行動(dòng)自由最大化的力,T指的是定義整體強(qiáng)度的溫度(可用資源),以及S指的是時(shí)間范圍tau內(nèi)的熵。
機(jī)器人學(xué)作為一門工業(yè)和科學(xué),其目標(biāo)是通過增加嵌入式模擬智能來最大限度地提高未來機(jī)器人行動(dòng)的自由度。這就需要:
● 有更多的傳感器來獲得更高精度的機(jī)器人周圍環(huán)境模型。
● 有更好的傳感器連接到控制算法(和更分散的控制算法)。
● 有更好的算法從傳感器數(shù)據(jù)中提取盡可能多的信息。
● 有更好的執(zhí)行器來根據(jù)控制算法的決策更快更準(zhǔn)確地行動(dòng)。
不妨看一看當(dāng)今的科技領(lǐng)域,機(jī)器人已經(jīng)獲得了很大的自主性,并且正在使用來自互補(bǔ)性氧化金屬半導(dǎo)體相機(jī)傳感器、激光雷達(dá)和雷達(dá)的傳感器來適應(yīng)各種各樣的應(yīng)用。雖然相機(jī)的角度分辨率和動(dòng)態(tài)范圍比雷達(dá)大得多,但相機(jī)不能提供激光雷達(dá)所具有的動(dòng)態(tài)范圍,也不能在煙霧彌漫或多塵的環(huán)境中工作。
圖1:工廠環(huán)境中的現(xiàn)代機(jī)械臂示例
由于機(jī)器人被設(shè)計(jì)成適應(yīng)最廣泛應(yīng)用的最靈活的選擇,因而它們需要在低光、多塵或明亮的環(huán)境中工作。這種靈活性可以通過組合傳感器信息——傳感器融合來實(shí)現(xiàn)。換句話說,不同傳感器的信息可用于重建機(jī)器人環(huán)境的彈性表示,從而在更多應(yīng)用中實(shí)現(xiàn)自主性。例如,如果一個(gè)相機(jī)被暫時(shí)覆蓋,則其他傳感器必須能夠使機(jī)器人安全運(yùn)行。為確保機(jī)器人能對(duì)其所處環(huán)境有全方位的了解,機(jī)器人傳感器數(shù)據(jù)需要以限時(shí)的方式進(jìn)行路由,并用少量的電纜連接到機(jī)器人控制器,以最大限度地提高連接的可靠性。
如今,高帶寬低延遲總線主要基于低壓差分信號(hào)(LVDS)。然而, LVDS接口并沒有標(biāo)準(zhǔn),這就導(dǎo)致傳感器到控制器的生態(tài)系統(tǒng)出現(xiàn)分裂,并且使來自不同供應(yīng)商的混合和匹配解決方案變得困難。一旦傳感器數(shù)據(jù)被傳輸?shù)綑C(jī)器人控制器,一系列基于深度神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法可以幫助提高機(jī)器人所處環(huán)境的精度。用深度學(xué)習(xí)教父Yann LeCun、Yoshua Bengio和Geoffrey Hinton的話說,“深度學(xué)習(xí)允許由多個(gè)處理層組成的計(jì)算模型學(xué)習(xí)具有多個(gè)抽象層的數(shù)據(jù)表示。”這些深度神經(jīng)網(wǎng)絡(luò)可以在機(jī)器人內(nèi)部用于快速、實(shí)時(shí)處理,也可以在云中用于元信息收集或更復(fù)雜的推理。
圖2:機(jī)器人的不同感應(yīng)能力
對(duì)于大多數(shù)機(jī)器人來說,得益于邊緣處理所允許的固有低延遲,邊緣推理是確保機(jī)器人能夠?qū)ζ洵h(huán)境的變化做出快速反應(yīng)的重要參數(shù)。邊緣推理可用于卷積神經(jīng)網(wǎng)絡(luò),類似的神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)可用于圖像分類或預(yù)防性維護(hù)估算,深度Q網(wǎng)絡(luò)可用于機(jī)器人路徑規(guī)劃,或用于為解決一類特定問題而設(shè)計(jì)的自定義神經(jīng)網(wǎng)絡(luò)。
展望未來
在未來,傳感器似乎不太可能有太大的變化,但所涉及的處理將有所不同。成像傳感器可能變成高光譜或可提供更高的分辨率。激光雷達(dá)可能有更高的波長(zhǎng)、更安全、并具有更長(zhǎng)的范圍。雷達(dá)傳感器可能配備集成天線,但這些并不會(huì)有顯著變化。未來將改變的是信息使用和聚合的方式。
例如,在傳感器集線器上,引入單對(duì)以太網(wǎng)(aka T1)和數(shù)據(jù)線供電(電氣和電子工程師學(xué)會(huì)802.3bu-2016)將簡(jiǎn)化傳感器集線器接口的設(shè)計(jì),從而使更傳感器組合更廣泛和實(shí)現(xiàn)標(biāo)準(zhǔn)化配電。在控制方面,強(qiáng)化學(xué)習(xí)將由于最近的突破而得到加強(qiáng),從而解決了諸如從所有可能的失敗中學(xué)到的高成本,以及由于學(xué)習(xí)模式的偏斜而學(xué)習(xí)錯(cuò)誤行為的懲罰等難題。
在歸類方面,大多數(shù)基于卷積神經(jīng)網(wǎng)絡(luò)的方法并沒有從激光雷達(dá)提供的體素中完全提取出所有的3D信息。下一代深度神經(jīng)網(wǎng)絡(luò)將利用框架提供的非歐幾里德機(jī)器學(xué)習(xí)(或幾何機(jī)器學(xué)習(xí))中的最新進(jìn)展,如PointNet、ShapeNet、Splatnet和Voxnet等框架。邊緣推理和傳感器融合將融合到我所看到的多個(gè)傳感器源的層次推理中。在這里,數(shù)據(jù)將通過更簡(jiǎn)單的推理網(wǎng)絡(luò)做出更快的回路反應(yīng),例如電流控制神經(jīng)網(wǎng)絡(luò),以改善現(xiàn)有比例-積分-微分網(wǎng)絡(luò)的性能,一直到能夠提供預(yù)測(cè)性維護(hù)診斷并處于中間位置的更加復(fù)雜的長(zhǎng)期-短期記憶網(wǎng)絡(luò)。神經(jīng)網(wǎng)絡(luò)將能夠補(bǔ)償機(jī)器人結(jié)構(gòu)的微小誤差,并提供更高的位置精度和更平滑的運(yùn)動(dòng)。
總結(jié)
自主機(jī)器人進(jìn)化是一個(gè)始終變化的目標(biāo)。當(dāng)喬治·德沃爾(George Devol)在1954年申請(qǐng)專利時(shí),此機(jī)器顯然比當(dāng)時(shí)任何基于凸輪或人工操作的機(jī)器都更自主。但按照今天的標(biāo)準(zhǔn),這將是一個(gè)非常僵化的設(shè)置,甚至不會(huì)出現(xiàn)在自主程度的排名上。這種劇烈的變化很可能在我們意識(shí)到之前再次發(fā)生。
現(xiàn)在人們認(rèn)為,輪式機(jī)器人和協(xié)作機(jī)器人正處于自主的邊緣,當(dāng)人類靠近它們時(shí),它們會(huì)減速,甚至在移動(dòng)時(shí)也能避免撞到人類。隨著嵌入式模擬智能技術(shù)的迅速變化,這些“處于邊緣”的創(chuàng)新型機(jī)器人在不久的將來不會(huì)被視為具有自主性,因?yàn)檫@個(gè)行業(yè)正在以如此之快的速度發(fā)展并不斷產(chǎn)生新技術(shù),從而使得機(jī)器人技術(shù)比以往任何時(shí)候都更加自主。
本文轉(zhuǎn)載自德州儀器。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器