-
揭秘電動汽車中直流鏈路電容器的奧秘(上)
直流鏈路電容器在功率轉(zhuǎn)換器中扮演著中間緩沖器的角色,連接著輸入源與輸出負(fù)載,適應(yīng)不同的瞬時(shí)功率、電壓和頻率。在電動汽車(EV)領(lǐng)域,它們不僅有效抵消逆變器、電機(jī)控制器及電池系統(tǒng)中電感的影響,還充當(dāng)濾波器,為電動汽車子系統(tǒng)提供保護(hù),抵御電壓尖峰、浪涌及電磁干擾(EMI)的侵害。
2024-10-29
-
采用IGBT5.XT技術(shù)的PrimePACK?為風(fēng)能變流器提供卓越的解決方案
鑒于迫切的環(huán)境需求,我們必須確保清潔能源基礎(chǔ)設(shè)施的啟用,以減少碳排放對環(huán)境的負(fù)面影響。在這一至關(guān)重要的舉措中,風(fēng)力發(fā)電技術(shù)扮演了關(guān)鍵角色,并已處于領(lǐng)先地位。在過去的20年中,風(fēng)力渦輪機(jī)的尺寸已擴(kuò)大三倍,其發(fā)電功率大幅提升,不久后將突破15MW的大關(guān)。因此,先進(jìn)風(fēng)能變流器的需求在不斷增長。這些變流器在惡劣境條件下工作,需要高度的可靠性和堅(jiān)固性,以確保較長的使用壽命。為了在限制機(jī)柜內(nèi)元件數(shù)量的情況下最大化功率輸出,我們需要采用高功率密度設(shè)計(jì)。鑒于需求的持續(xù)增長,我們的大規(guī)模生產(chǎn)能力顯得尤為關(guān)鍵通過對現(xiàn)有逆變器設(shè)計(jì)的升級,不僅能夠降低風(fēng)險(xiǎn),還能縮短開發(fā)時(shí)間,最終達(dá)到優(yōu)化設(shè)計(jì)和開發(fā)流程的目的。
2024-10-27
-
利用 T&M 解決方案加速電動傳動系統(tǒng)設(shè)計(jì)
電動傳動系統(tǒng)包括逆變器、電機(jī)和電力電子設(shè)備,是電動汽車 (EV) 的。傳動系統(tǒng)性能對加速度、行駛里程和整體駕駛行為有直接影響。在優(yōu)化傳動系統(tǒng)性能和確保無縫車輛系統(tǒng)集成時(shí),全面的測量和分析是必不可少的。事實(shí)上,許多其他傳動系統(tǒng)組件,例如直流母線電容器、輔助逆變器、電池管理系統(tǒng) (BMS)、車載充電器 (OBC) 和傳感器也會對整體系統(tǒng)性能產(chǎn)生影響。
2024-10-23
-
如何減少逆變器中的電磁干擾
逆變器是用于將輸入的直流電轉(zhuǎn)換為輸出交流電的一種電路。逆變器可用于電池供電系統(tǒng)、可再生能源系統(tǒng)、不間斷電源、電機(jī)驅(qū)動等。逆變器是一種電力電子轉(zhuǎn)換器,能夠?qū)⑤斎氲闹绷麟娹D(zhuǎn)換為具有所需振幅和頻率的交流電。
2024-10-18
-
使用功率分析儀測量和分析電抗器(電感器)的方法
頻電抗器用于電動汽車 (EV) 和混合動力汽車 (HEV) 的各種位置。例如,電池和逆變器之間的升壓 DC/DC 轉(zhuǎn)換器以及電池充電電路中的 AC/DC 轉(zhuǎn)換器。為了提高整個(gè)系統(tǒng)的效率,必須提高每個(gè)組成電路的效率,而電抗器是造成這些電路大量損耗的元件之一。
2024-10-11
-
意法半導(dǎo)體第四代碳化硅功率技術(shù)問世:為下一代電動汽車電驅(qū)逆變器量身定制
服務(wù)多重電子應(yīng)用領(lǐng)域、全球排名前列的半導(dǎo)體公司意法半導(dǎo)體 (STMicroelectronics,簡稱ST;) 推出第四代 STPOWER 碳化硅 (SiC) MOSFET 技術(shù)。第四代技術(shù)有望在能效、功率密度和穩(wěn)健性三個(gè)方面成為新的市場標(biāo)桿。在滿足汽車和工業(yè)市場需求的同時(shí),意法半導(dǎo)體還針對電動汽車電驅(qū)系統(tǒng)的關(guān)鍵部件逆變器特別優(yōu)化了第四代技術(shù)。公司計(jì)劃在 2027 年前推出更多先進(jìn)的 SiC 技術(shù)創(chuàng)新成果,履行創(chuàng)新承諾。
2024-09-30
-
IGBT 還是 SiC ? 英飛凌新型混合功率器件助力新能源汽車實(shí)現(xiàn)高性價(jià)比電驅(qū)
近幾年新能源車發(fā)展迅猛,技術(shù)創(chuàng)新突飛猛進(jìn)。如何設(shè)計(jì)更高效的牽引逆變器使整車獲得更長的續(xù)航里程一直是研發(fā)技術(shù)人員探討的最重要話題之一。高效的牽引逆變器需要在功率、效率和材料利用率之間取得適當(dāng)?shù)钠胶狻?/p>
2024-09-25
-
電氣負(fù)載模擬器
電氣負(fù)載仿真的概念涉及控制電力電子轉(zhuǎn)換器,使其行為類似于實(shí)際電氣負(fù)載。例如,電壓源逆變器 (VSI) 可以仿真感應(yīng)電機(jī)。在不同情況下,負(fù)載仿真器的使用至關(guān)重要。它有助于分析在各種負(fù)載條件和環(huán)境下將多臺機(jī)器連接到電網(wǎng)的可行性。的部分是,這可以在沒有任何機(jī)電機(jī)械的情況下完成。負(fù)載仿真器可以提供負(fù)載特性來驗(yàn)證控制算法和逆變器設(shè)計(jì)。因此,這是一個(gè)在實(shí)驗(yàn)室環(huán)境中驗(yàn)證逆變器的更靈活的平臺。
2024-09-15
-
用于測試汽車逆變器的主動電機(jī)仿真
作為電池模擬器,可以使用標(biāo)準(zhǔn)電源。通過適當(dāng)控制電機(jī)模擬器,相電流通過相線圈從 DUT 流向模擬器,并通過 DC-Link 流回 DUT,反之亦然。因此,DC-Link受到實(shí)際電流的壓力,但由于能量在兩個(gè)逆變器之間流動,因此電池模擬只需為整個(gè)系統(tǒng)的損耗提供能量。這是重要的好處之一:可以使用相對較小的電源,而無需向電網(wǎng)反饋能量。僅使用 20kW 的電源,就可以模擬約 250kW 的電機(jī)。
2024-09-15
-
超高功率密度SiC模塊,助力電動車主逆變器小型化
碳化硅(SiC)作為一種第三代半導(dǎo)體材料,具有耐高壓、耐高頻的特性,相比傳統(tǒng)的硅基半導(dǎo)體,碳化硅MOSFET在功率轉(zhuǎn)換效率、損耗降低方面表現(xiàn)出色,這使得它在新能源汽車、電力電子設(shè)備等領(lǐng)域有著廣泛的應(yīng)用前景。隨著新能源汽車市場的快速增長,碳化硅MOSFET的需求也在不斷增加,尤其是在需要高效率、高可靠性的應(yīng)用場景中,碳化硅MOSFET的優(yōu)勢更加明顯。
2024-09-05
-
OBC設(shè)計(jì)不斷升級,揭秘如何適應(yīng)更高功率等級和電壓
消費(fèi)者需求不斷攀升,電動汽車(EV)必須延長續(xù)航里程,方可與傳統(tǒng)的內(nèi)燃機(jī)(ICE)汽車相媲美。解決這個(gè)問題主要有兩種方法:在不顯著增加電池尺寸或重量的情況下提升電池容量,或提高主驅(qū)逆變器等關(guān)鍵高功率器件的運(yùn)行能效。為應(yīng)對電子元件導(dǎo)通損耗和開關(guān)損耗造成的巨大功率損耗,汽車制造商正在通過提高電池電壓來增加車輛的續(xù)航里程。
2024-08-22
-
不斷改進(jìn) OBC 設(shè)計(jì),適應(yīng)更高的功率等級和電壓
消費(fèi)者需求不斷攀升,電動汽車 (EV) 必須延長續(xù)航里程,方可與傳統(tǒng)的內(nèi)燃機(jī) (ICE) 汽車相媲美。解決這個(gè)問題主要有兩種方法:在不顯著增加電池尺寸或重量的情況下提升電池容量,或提高主驅(qū)逆變器等關(guān)鍵高功率器件的運(yùn)行能效。
2024-08-08
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
- “扒開”超級電容的“外衣”,看看超級電容“超級”在哪兒
- DigiKey 誠邀各位參會者蒞臨SPS 2024?展會參觀交流,體驗(yàn)最新自動化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall