你的位置:首頁 > RF/微波 > 正文

數(shù)字可調(diào)諧濾波器如何支持寬帶接收器應用

發(fā)布時間:2022-08-10 來源:ADI 責任編輯:wenwei

【導讀】如今的多通道寬帶多倍頻程調(diào)諧RF接收器,通常需要消除不必要的阻塞信號,從而保持相關(guān)信號的保真度。濾波器在減少這些不必要的信號上起到了重要作用,特別是在這些系統(tǒng)的接收器RF前端和本振(LO)部分。本文將探討RF信號鏈中的濾波器,討論阻塞信號的概念,回顧傳統(tǒng)的濾波技術(shù),然后介紹用于優(yōu)化信號鏈性能的新產(chǎn)品解決方案。


引言


為了不斷減小尺寸、重量、功率和成本,同時提高或保持性能,RF系統(tǒng)設計人員有必要評估信號鏈中的每個組件,并尋找創(chuàng)新機會。由于通常濾波器會占用大量的電路板空間,因此這是考慮減小尺寸時尋求突破的重點領(lǐng)域。


同時,接收器的架構(gòu)也在不斷發(fā)展,模數(shù)轉(zhuǎn)換器(ADC)能夠以更高的輸入頻率采樣。隨著ADC輸入頻率的提高,信號鏈中對濾波器的限制也發(fā)生了變化。一般來說,這種趨勢意味著對濾波器的抑制要求有所放寬,這為進一步優(yōu)化尺寸和調(diào)諧性能提供了機會。


在開始探索之前,首先將概述射頻信號鏈和各項定義,以便說明需要使用濾波器的位置及其原因。此外,回顧傳統(tǒng)技術(shù)也有助于洞察現(xiàn)狀。然后,通過比較這些傳統(tǒng)技術(shù)和最新的產(chǎn)品解決方案,可以清楚地看到系統(tǒng)設計人員如何輕松實現(xiàn)他們的目標。


RF信號鏈概述


圖1顯示了覆蓋2 GHz至18 GHz的典型寬帶信號鏈。該信號鏈的基本工作原理如下。天線接收的頻率范圍很廣。將頻率轉(zhuǎn)換為ADC能夠進行數(shù)字化處理的中頻信號之前,需要進行一系列放大、濾波和衰減控制(射頻前端)。此框圖中的濾波功能可分為四大類:


●   預選器亞倍頻程濾波

●   鏡像/中頻信號抑制

●   LO諧波

●   抗混疊


1658924144964942.png

圖1.2 Ghz至18 GHz接收器框圖。


1658924133379091.png

圖2.(a)亞倍頻程預選可減輕IMD2問題;(b)濾波器頻帶隨著頻率的增加而變寬。


1658924122638511.png

圖3.(a)必須在混頻器之前抑制的鏡像頻段和(b)中頻頻段。


預選器亞倍頻程濾波需要靠近信號鏈的起點,用于解決二階交調(diào)失真(IMD2)雜散問題,這類問題在有干擾信號(也稱為阻斷信號)的情況下會出現(xiàn)。當兩個帶外(OOB)雜散相加或相減并形成一個帶內(nèi)雜散時,就會發(fā)生這種情況,這可能會掩蓋目標信號。亞倍頻程濾波器可以在這些干擾信號到達信號鏈的非線性元件(如放大器或混頻器)之前將其去除。通常,亞倍頻程濾波器的絕對帶寬要求會隨著中心頻率的降低而變得更窄。例如,2 GHz至18 GHz信號鏈的第一頻帶可能僅覆蓋2 GHz至3 GHz,并且需要在1.5 GHz的低壓側(cè)(F_high/2)和4 GHz的高壓側(cè)(F_low × 2)具有良好的抑制,而信號鏈的最高頻帶可能覆蓋12 GHz至18 GHz,在9 GHz的低壓側(cè)和24 GHz的高壓側(cè)具有良好的抑制。這些差異意味著需要更多的濾波器來覆蓋低頻段,而不是高頻段。預選器濾波的頻譜示例如圖2所示。


鏡像/中頻抑制濾波通常是在信號鏈的下游,在LNA和混頻器之間。它用于抑制鏡像頻率和不需要的中頻頻率。鏡像是一個頻段,當它出現(xiàn)在混頻器輸入端時,將生成與混頻器輸出端目標信號振幅相同的信號。鏡像抑制可以通過信號鏈中的幾個組件來實現(xiàn),如預選濾波器、專用鏡像抑制濾波器和來自于單邊帶(SSB)混頻器的鏡像抑制能力。中頻信號抑制需要在混頻器之前降低中頻頻率的頻譜,避免它們直接泄漏到混頻器上并顯示為不需要的雜散。圖3顯示了一個不需要的鏡像和中頻頻段的頻譜示例。


根據(jù)LO生成電路的不同,信號鏈中的這一點對濾波的要求可能會有所不同。輸入混頻器LO端口的目標信號是干凈的正弦波或方波。通常,LO電路會產(chǎn)生所需LO信號的次諧波和諧波。這些不需要的信號(見圖4)需要在到達混頻器之前進行抑制,避免產(chǎn)生不需要的MxN雜散產(chǎn)物。如果LO信號處于單一頻率,那么一個固定帶通濾波器就足夠了,并且可以優(yōu)化為僅通過目標信號。在寬帶信號鏈中,通常要實現(xiàn)可調(diào)諧的LO信號,因此需要一組開關(guān)濾波器或一個可調(diào)諧濾波器。


10.png

圖4.LO諧波濾波。


1658924086497461.png

圖5.如果沒有足夠的抑制,ADC中的混疊會導致干擾信號出現(xiàn)在某個頻段。


使用ADC采樣時,系統(tǒng)設計人員需選擇要進行數(shù)字化處理的奈奎斯特區(qū)。第一個奈奎斯特區(qū)的范圍從DC到fS/2(其中fS是ADC的采樣率)。第二個奈奎斯特區(qū)是從fS/2到fS,以此類推。抗混疊濾波器用于抑制與目標奈奎斯特區(qū)相鄰的奈奎斯特區(qū)中的干擾信號。信號鏈中這個位置的干擾信號可能來自不同的來源,比如混頻器中產(chǎn)生的MxN雜散、與目標信號相鄰的下變頻信號,或是來自中頻信號鏈中產(chǎn)生的諧波。在進行數(shù)字化處理時,輸入ADC的任何干擾信號都將混疊到第一奈奎斯特區(qū)。不需要的混疊信號的頻譜示例如圖5所示。


阻塞信號


在射頻通信系統(tǒng)中,阻塞信號是一種接收到的干擾輸入信號,它會降低目標信號的增益和信納比(SINAD)。阻塞信號可能會直接掩蓋目標信號,也可能會產(chǎn)生掩蓋目標信號的雜散產(chǎn)物。這些不需要的信號可能是無意或有意干擾的結(jié)果。前一種情況中,它來自相鄰頻譜中運行的另一個射頻通信系統(tǒng)。后一種情況中,它來自惡意電子戰(zhàn)系統(tǒng),目的是故意干擾射頻通信或雷達系統(tǒng)。圖6顯示了阻塞信號和目標信號的頻譜示例。


12.png

圖6.目標信號和阻塞信號。


很多射頻元件會表現(xiàn)出弱非線性無記憶行為。這意味著它們可以用低階多項式來近似表示。例如,寬帶頻率放大器可由僅包括一階項和三階項的奇數(shù)階多項式建模:


13.png


當在工作頻率范圍內(nèi),放大器的輸入端存在兩個入射信號時,就像目標信號ω1和阻斷信號ω2的情況,輸入信號可描述為:


14.png


將輸入等式代入奇數(shù)階多項式可得到以下輸出結(jié)果:


15.png


當目標信號的振幅遠小于阻塞器信號時,A<<B,則等式3中的多項式進一步簡化為:


16.png


根據(jù)簡化得到的等式4,現(xiàn)在目標信號振幅與阻塞信號振幅B密切相關(guān)。由于大多數(shù)目標射頻分量是壓縮的,α系數(shù)必須是相反的符號1,使得α1α3 < 0。上述兩種說法的結(jié)果是必然的,因為對于較大的阻塞信號振幅來說,目標信號的增益趨于零。


濾波器定義


為了解決RF通信系統(tǒng)中干擾信號的問題,工程師們依靠濾波器來減少這些信號并保留目標信號。簡單地說,濾波器是一種允許在通帶內(nèi)傳輸頻率和在阻帶內(nèi)抑制頻率的組件。2


通常,濾波器的插入損耗(dB)可描述為低通、高通、帶通或帶阻(陷波)。這個術(shù)語指的是所繪制的容許通帶頻率響應與增加的頻率之間的關(guān)系。濾波器可以根據(jù)其頻率響應波形進一步分類,例如通帶紋波、阻帶紋波,以及它們相對于頻率的滾降速度。為了便于說明,圖7顯示了四種主要的濾波器類型。


1658924005547152.png

圖7.按類型劃分的濾波器波形。


除了插入損耗外,濾波器的另一個重要特性是群延遲。群延遲是指傳輸相位相對于頻率的變化率。群延遲的單位是時間(秒),因此這個指標可視為特定信號通過濾波器的傳輸時間。單一頻率的傳輸時間本身通常影響不大,但當寬帶調(diào)制信號通過濾波器時,群延遲的平坦性就變得很重要,因為它可以在接收信號中引入不同的時間延遲,使信號失真。等式5給出了群延遲的方程,其中θ是相位,?是頻率:


18.png


具有明顯插入損耗和群延遲特性的典型濾波器類型有Butterworth、Chebyshev、橢圓和Bessel。每個類型通常由一個階數(shù)來定義,它描述了濾波器中有多少個無功元件。階數(shù)越高,頻率滾降就越快。


在考慮類似階數(shù)的濾波器時,Butterworth濾波器可提供盡量平坦的通帶響應,但會犧牲頻率滾降,而Chebyshev濾波器則具有很好的頻率滾降,但存在一些通帶紋波。橢圓濾波器(有時稱為Cauer-Chebyshev)比Chebyshev濾波器有更多的頻率滾降,但也因此會在通帶和阻帶中產(chǎn)生紋波。Bessel濾波器的頻率和群延遲響應最為平坦,但其頻率滾降性能最差。為了便于說明,圖8顯示了一個五階低通濾波器的理想插入損耗和群延遲,其3 dB頻率(f3 dB)為2 Ghz,允許的通帶紋波為1 dB,阻帶紋波為50 dB。


對于在整個頻率范圍內(nèi)保持恒定相位很重要的系統(tǒng),如雷達系統(tǒng),相關(guān)頻帶的群延遲平坦度對于避免接收到的脈沖出現(xiàn)意外相位偏差來說至關(guān)重要。假設接收信號范圍可以覆蓋1 GHz或更多,則應盡量減少寬頻帶的群延遲平坦度。根據(jù)經(jīng)驗法則,應將群延遲平坦度保持在<1 ns,但這要取決于系統(tǒng)對相位偏差的容限。圖9顯示了群延遲平坦度分別為2.24 ns和0.8 ns的濾波器示例。觀察這些波形可以發(fā)現(xiàn),對于更平坦的群延遲來說,整個頻率范圍的相位變化更加一致。


最后,用于設計濾波器的無功元件的品質(zhì)因數(shù)(Q因數(shù))是影響性能的一個重要屬性。品質(zhì)因數(shù)定義為特定電路元件的無功阻抗與串聯(lián)損耗電阻之比。它與技術(shù)工藝和用于實現(xiàn)的物理區(qū)域密切相關(guān)。品質(zhì)系數(shù)越高,頻率響應越快,插入損耗越小。


1658923973738357.png

圖8.五階低通濾波器的插入損耗和群延遲。


1658923940721871.png

圖9.群延遲平坦度影響與線性相位的偏差:(a)顯示2.24 ns的群延遲平坦度 (b)顯示0.8 ns的平坦度,兩者對比可看出,相位變化與頻率的關(guān)系更一致。


RF通信的傳統(tǒng)濾波技術(shù)


為射頻通信系統(tǒng)設計濾波器時,有多種技術(shù)可用于實現(xiàn)經(jīng)典型濾波器。傳統(tǒng)上,射頻工程師依靠的是帶有表面貼裝元件的分立式集總元件實現(xiàn),或者是包含印在PCB材料上的傳輸線的分布式元件濾波器。然而,近年來,濾波器基于半導體工藝設計,允許使用精確的溫度穩(wěn)定無功元件,品質(zhì)系數(shù)得到了改善。此外,半導體工藝支持使用開關(guān)和可調(diào)諧無功元件,這在分立式集總元件實現(xiàn)中可能更具挑戰(zhàn)性。還有體聲波(BAW)、表面聲波(SAW)、低溫共燒陶瓷(LTCC)、腔體濾波器或陶瓷諧振器等其它技術(shù)。


每種方法和技術(shù)都存在權(quán)衡取舍:


集總LC濾波器由PCB上的表面貼裝電感器和電容器來實現(xiàn)。這樣做的好處是便于組裝,然后通過調(diào)整數(shù)值來改變?yōu)V波器的性能。


分布式濾波器設計為在電介質(zhì)上實現(xiàn)的傳輸線的諧振片(可以集成到PCB中,也可以獨立在一個單獨的電介質(zhì)上),并定向為在某些頻率范圍內(nèi)充當準電感器或準電容器。它們表現(xiàn)出周期性特征。在某些情況下,會添加集總元件來改進/小型化分布式濾波器。


陶瓷諧振器濾波器使用多個陶瓷諧振器(這是一個分布式元件),通過集總元件進行耦合。耦合元件通常是一個電容,但有時也會使用電感。這種類型的濾波器是分布式和集總元件的混合體。


腔體濾波器由封裝在導電盒內(nèi)的分布式元件(棒)來實現(xiàn)。它們以能夠處理高功率而幾乎沒有損耗而聞名,但要以尺寸和成本為代價。


BAW和SAW技術(shù)可以提供出色的性能,但它們往往在頻率選擇方面有要求,不適合寬帶應用。


LTCC濾波器通過將多層分布式傳輸線組合在一個陶瓷封裝中來實現(xiàn),該陶瓷封裝類似于分布式濾波器,可用于多種應用,但它是固定的。由于它們是3D堆疊式的,所以最終在PCB上占用的空間很小。


最后,隨著最近半導體性能的提升,集成到半導體中的濾波器支持的頻率范圍也更加寬泛。如果能夠?qū)?shù)字控制元件輕松集成到這些元件中,有助于軟件定義收發(fā)器的采用。總的來說,性能和集成度之間的權(quán)衡取舍為寬帶系統(tǒng)的設計人員提供了有用的價值。


表1.濾波器類型比較

1658923921952722.png


最新的濾波器解決方案


ADI公司開發(fā)了一個新的數(shù)字調(diào)諧濾波器產(chǎn)品系列,利用增強型半導體工藝和工業(yè)友好型封裝技術(shù)。這項技術(shù)成就了小型、高抑制濾波器,可以緩解接收機中出現(xiàn)的阻塞問題。這些濾波器通過標準串行至并行接口(SPI)通信進行高度配置,具有快速的RF開關(guān)速度。此外,ADI公司在每個芯片內(nèi)加入了一個128種狀態(tài)的查詢表,以便快速改變?yōu)V波器狀態(tài),實現(xiàn)快速跳頻應用。高抑制快速調(diào)諧與寬頻率覆蓋的結(jié)合,使下一代接收器應用能夠在不利的頻譜環(huán)境中運行。


1658923903814606.png

圖10.ADMV8818功能框圖。


1658923890166054.png

圖11.使用ADMV8818作為預選器和鏡像濾波器的2 Ghz至18 GHz接收器的方框圖。


使用這項技術(shù)推出的最新產(chǎn)品為 ADMV8818 和 ADMV8913。前者有四個高通濾波器和四個低通濾波器,工作頻率為2 GHz至18 GHz;后者有一個高通濾波器和低通濾波器,工作頻率為8 GHz至12 GHz。


ADMV8818是一款高度靈活的濾波器,采用9 mm×9 mm封裝,可在2 GHz和18 GHz之間實現(xiàn)可調(diào)諧的帶通、高通、低通或旁路響應。該芯片由兩部分組成:輸入部分和輸出部分。輸入部分有四個高通濾波器和一個可選旁路,旁路可通過兩個RFIN開關(guān)進行選擇。同樣,輸出部分有四個低通濾波器和一個可選旁路,旁路可通過兩個RFOUT開關(guān)進行選擇。每個高通和低通濾波器都可以用16種狀態(tài)(4個控制位)進行調(diào)諧,以調(diào)整3 dB頻率(f3 dB)。圖10所示為ADMV8818的功能框圖。


憑借可快速重新配置的靈活結(jié)構(gòu)和較小的外形尺寸,ADMV8818可在2 GHz至18 GHz頻段上提供全覆蓋,沒有任何死區(qū)。ADMV8818可配置為亞倍頻程預選濾波器、鏡像或中頻濾波器。當在圖11所示的信號鏈中進行配置時,接收器可以保持高靈敏度,并且可以在存在較大的OOB信號時,改用ADMV8818作為預選器。


例如,如果在9 Ghz頻段附近接收到目標信號,但在4.5 GHz頻段存在一個強大的OOB阻塞信號,那么該阻塞信號會導致諧波出現(xiàn)在9 GHz目標信號附近,從而妨礙操作。將ADMV8818配置為一個6 GHz至9 GHz的帶通濾波器,可允許寬帶信號通過,同時在信號鏈的非線性元件中引起諧波問題之前,適當降低阻塞信號的電平。為這種情況配置的ADMV8818的S參數(shù)掃描可覆蓋阻塞信號,如圖12所示。


1658923870338002.png

圖12.ADMV8818配置為6 GHz至9 GHz帶通濾波器。該濾波器抑制F2–F1、F1+F2、F/2和F×2雜散產(chǎn)物。


典型的2 GHz到18 GHz預選濾波器模塊的尺寸比較如圖13所示。其中開關(guān)固定濾波器預選器組是在陶瓷基板上采用分布式濾波技術(shù)實現(xiàn)的。尺寸根據(jù)市面上的濾波器產(chǎn)品估算。估算時包含了八擲開關(guān),用來比較等效功能。圖中所示的可調(diào)諧BPF是ADMV8818,它覆蓋的頻率范圍相同,并且調(diào)諧靈活性也比開關(guān)式濾波器組更全面。與開關(guān)式濾波器組相比,ADMV8818的占用面積節(jié)省超過75%。接收器信號鏈中的預選器功能通常在系統(tǒng)的整體尺寸中占有相當大的比例,因此在尺寸有限的電子戰(zhàn)系統(tǒng)中,這種占用面積節(jié)省至關(guān)重要,這些系統(tǒng)可以靈活地在尺寸與性能之間進行權(quán)衡取舍。


ADMV8913是高通和低通濾波器的組合,采用6 mm × 3 mm封裝,它專門設計用于在8 Ghz至12 GHz的頻率范圍(X波段)內(nèi)工作,插入損耗低至5 dB。高通和低通濾波器都可以用16種狀態(tài)(4個控制位)進行調(diào)諧,以調(diào)整3 dB頻率(f3 dB)。此外,ADMV8913集成了一個并行邏輯接口,可以在不需要SPI通信的情況下設置濾波器狀態(tài)。這種并行邏輯接口對于需要快速濾波器響應時間的系統(tǒng)來說相當有用,因為它消除了SPI處理所需的時間。圖14所示為ADMV8913的功能框圖。


現(xiàn)代X頻段雷達系統(tǒng),無論是采用機械轉(zhuǎn)向天線還是高通道數(shù)相控陣波束,通常都依賴于尺寸緊湊、插入損耗低且易于配置的濾波解決方案。由于插入損耗低、尺寸小、數(shù)字接口選項(SPI或并行控制)靈活,ADMV8913非常適合這種應用。這些功能特點使它能夠靠近這些系統(tǒng)的前端,確保出色的性能,同時降低集成的復雜性。


1658923850821259.png

圖13.固定開關(guān)的2 GHz至18 GHz BPF(左)與數(shù)字可調(diào)諧2 GHz至18 GHz BPF(右)。占用面積節(jié)省超過75%。


26.png

圖14.ADMV8913功能框圖


結(jié)論


設計寬帶接收器的射頻前端時,要考慮的因素有很多。前端的設計必須能夠處理難以預測的阻塞情況,同時還能檢測低電平信號。能夠動態(tài)調(diào)整前端濾波性能,以處理這些阻塞信號,這是射頻前端的一個關(guān)鍵特性。ADI公司新推出的數(shù)字控制可調(diào)諧濾波器IC產(chǎn)品具備出色的性能,并且數(shù)字功能也進行了強化,可滿足眾多前端應用的需要。這兩款新產(chǎn)品只是數(shù)字可調(diào)諧濾波器產(chǎn)品組合中眾多新開發(fā)產(chǎn)品中最先推出的兩款。有興趣了解這些產(chǎn)品的客戶,請訪問 數(shù)字可調(diào)諧濾波器 產(chǎn)品頁面,查看最新的數(shù)據(jù)表,或與當?shù)卮砺?lián)系,討論具體的終端應用。


參考電路


1Bezhad Razavi. RF Microelectronics. Pearson Education, Inc., 2012。


2David Pozar. 《微波工程》,第3版,John Wiley & Sons, 2005。


Annino, Benjamin. “多倍頻程寬帶數(shù)字接收器的SFDR考量” 。《模擬對話》,第55卷第1期,2021年1月。


Bowick,Chris。 《RF電路設計》,第2版。 Elsevier, Inc., 2008。


Delos,Peter, “寬帶RF接收器架構(gòu)選項綜述”。 ADI公司,2017年2月。


Egan, William F. 《實用射頻系統(tǒng)設計》。John Wiley & Sons, 2003。


Tsui, James. 《微波接收器和相關(guān)器件》。 Peninsula, 1985。


Tsui, James和Chi-Hao Cheng?!秾拵Ы邮掌鞯臄?shù)字技術(shù)》。SciTech,2015年。


來源:ADI,Brad Hall 和 David Mailloux



免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。


推薦閱讀:


電路板布線布局相關(guān)的注意事項

邊緣智能——提高生產(chǎn)力并降低成本的關(guān)鍵

具有電流和溫度監(jiān)視功能的高性能降壓型穩(wěn)壓器!

建筑物控制面板的模塊化方案

單片驅(qū)動器+ MOSFET (DrMOS)技術(shù)如何改善電源系統(tǒng)設計

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉