復(fù)合放大器:高精度的高輸出驅(qū)動(dòng)能力
發(fā)布時(shí)間:2019-10-08 責(zé)任編輯:wenwei
【導(dǎo)讀】要開發(fā)的應(yīng)用似乎不存在解決方案是很正常的,甚至幾乎是情理之中的。為了滿足應(yīng)用要求,我們需要想出一種超出市場(chǎng)上現(xiàn)有產(chǎn)品性能的解決方案。例如,應(yīng)用可能需要具有高速、高電壓、高輸出驅(qū)動(dòng)能力的放大器,同時(shí)還可能要求出色的直流精度、低噪聲、低失真等。
滿足速度和輸出電壓/電流要求的放大器以及具有出色直流精度的放大器在市場(chǎng)上很容易獲得,事實(shí)上很多都是如此。但是,所有這些要求可能無(wú)法通過單個(gè)放大器來(lái)滿足。當(dāng)遇到這樣的問題時(shí),有些人會(huì)認(rèn)為我們不可能滿足此類應(yīng)用的要求,我們必須滿足于平庸的解決方案,要么選用精密放大器,要么選用 高速放大器,可能要犧牲一些要求。幸運(yùn)的是,這并非全然正確。對(duì)此,有一種解決方案是采用復(fù)合放大器,本文將說明它是如何實(shí)現(xiàn)的。
復(fù)合放大器
復(fù)合放大器由兩個(gè)獨(dú)立的放大器組成,其配置方式使得人們既能實(shí)現(xiàn)每個(gè)放大器的優(yōu)點(diǎn),又能削弱每個(gè)放大器的缺點(diǎn)。
圖1. 簡(jiǎn)單復(fù)合放大器配置
參考圖1,AMP1具有應(yīng)用所需的出色直流精度以及噪聲和失真性能。AMP2滿足輸出驅(qū)動(dòng)要求。在這種配置中,具有所需輸出規(guī)格的放大器(AMP2)放置在具有所需輸入規(guī)格的放大器(AMP1)的反饋環(huán)路中。下面將討論這種配置涉及的一些技術(shù)及其益處。
設(shè)置增益
初遇復(fù)合放大器時(shí),第一個(gè)問題可能是如何設(shè)置增益。為了解決這個(gè)問題,將復(fù)合放大器視為包含在大三角形內(nèi)的單個(gè)同相運(yùn)算放大器是有幫助的,如圖2所示。想象大三角形是黑色的,我們無(wú)法看清里面的東西,那么同相運(yùn)算放大器的增益就是1 + R1/R2。揭開大三角形內(nèi)部的復(fù)合配置并沒有改變?nèi)魏螙| 西,整個(gè)電路的增益仍然由R1和R2的比率控制。
在這種配置中,人們很容易認(rèn)為通過R3和R4改變AMP2的增益會(huì)影響AMP2的輸出電平,表明復(fù)合增益會(huì)發(fā)生變化,但事實(shí)并非如此。通過R3和R4提高AMP2周圍的增益只會(huì)降低AMP1的有效增益和輸出電平,而復(fù)合輸出(AMP2輸出)保持不變。或者,降低AMP2周圍的增益將會(huì)提高AMP1的有效增益。因此,復(fù)合放大器的增益一般僅取決于R1和R2。
圖2. 復(fù)合放大器被視為單個(gè)放大器
本文將討論實(shí)現(xiàn)復(fù)合放大器配置的主要優(yōu)點(diǎn)和設(shè)計(jì)考慮因素。本文將重點(diǎn)說明其對(duì)帶寬、直流精度、噪聲和失真的影響。
帶寬擴(kuò)展
與配置為相同增益的單個(gè)放大器相比,實(shí)現(xiàn)復(fù)合放大器的主要優(yōu)點(diǎn)之一是帶寬更寬。
參考圖3和圖4,假設(shè)我們有兩個(gè)獨(dú)立的放大器,每個(gè)放大器的增益帶寬積(GBWP)為100 MHz。將它們組合成一個(gè)復(fù)合配置,整個(gè)組合的有效 GBWP將會(huì)增加。在單位增益時(shí),復(fù)合放大器的-3 dB帶寬要高出約27%,盡管有少量峰化。在更高增益下,這種優(yōu)勢(shì)變得越發(fā)明顯。
圖3. 單位增益復(fù)合放大器
圖4. 單位增益時(shí)的-3 dB帶寬改善情況
圖5顯示了增益為10的復(fù)合放大器。請(qǐng)注意,復(fù)合增益通過R1和R2設(shè)置為10。AMP2周圍的增益設(shè)置為約3.16,迫使AMP1的有效增益與此相同。在兩個(gè)放大器之間平均分配增益可以產(chǎn)生最大可能的帶寬。
圖5. 復(fù)合放大器的增益配置為10
圖6比較了增益為10的單個(gè)放大器的頻率響應(yīng)與配置為同樣增益的復(fù)合放大器的頻率響應(yīng)。在這種情況下,復(fù)合放大器的-3 dB 帶寬高出約300%。這怎么可能?
圖6. 增益為10時(shí)的-3 dB帶寬改善情況
有關(guān)具體示例,請(qǐng)參閱圖7和圖8。我們要求系統(tǒng)增益為40 dB,使用兩個(gè)相同的放大器,每個(gè)放大器的開環(huán)增益為80 dB,GBWP為100 MHz。
圖7. 分配增益以獲得最大帶寬
圖8. 單個(gè)放大器的預(yù)期響應(yīng)
為使組合實(shí)現(xiàn)最高可能帶寬,我們將在兩個(gè)放大器之間平均分配所需的系統(tǒng)增益,每個(gè)放大器需提高20 dB的增益。因此,將AMP2的閉環(huán)增益設(shè)置為20 dB會(huì)迫使AMP1的有效閉環(huán)增益同樣達(dá)到20dB。采用這種增益配置,兩個(gè)放大器在開環(huán)曲線上的工作點(diǎn)均低于任何一個(gè)在40dB增益時(shí)的工作點(diǎn)。因此,與同樣增益的單個(gè)放大器解決方案相比,復(fù)合放大器在增益為40 dB時(shí)將具有更高的帶寬。
雖然看似相對(duì)簡(jiǎn)單且易于實(shí)現(xiàn),但在設(shè)計(jì)復(fù)合放大器時(shí)應(yīng)采取適當(dāng)?shù)拇胧﹣?lái)獲得盡可能高的帶寬,同時(shí)不能犧牲組合的穩(wěn)定性。在實(shí)際應(yīng)用中,放大器有非理想特性,而且可能不完全相同,這就要求使用適當(dāng)?shù)脑鲆媾渲脕?lái)保持穩(wěn)定性。另外應(yīng)注意,復(fù)合增益將以-40 dB/十倍頻程的速度滾降,因此在 兩級(jí)之間分配增益時(shí)必須小心。
在某些情況下,平均分配增益可能無(wú)法做到。就此而言,要在兩個(gè)放大器之間均等分配增益,AMP2的GBWP必須始終大于或等于AMP1的GBWP,否則將導(dǎo)致峰化,并且可能導(dǎo)致電路不穩(wěn)定。在AMP1 GBWP必須大于AMP2 GBWP的情況下,在兩個(gè)放大器之間重新分配增益通??梢孕U环€(wěn)定性。在這種情況下,降低 AMP2的增益會(huì)導(dǎo)致AMP1的有效增益提高。結(jié)果是AMP1閉環(huán)帶寬降低,因?yàn)槠湓陂_環(huán)曲線上的工作點(diǎn)提高,而AMP2閉環(huán)帶寬提高,因?yàn)槠湓陂_環(huán)曲線上的工作點(diǎn)降低。如果充分應(yīng)用AMP1 的減速和AMP2的加速,復(fù)合放大器的穩(wěn)定性就會(huì)恢復(fù)。
本文選用 AD8397 作為輸出級(jí)(AMP2),與各種精度的放大器AMP1 連接以展示復(fù)合放大器的優(yōu)勢(shì)。AD8397是一款高輸出電流放大器,可提供310 mA電流。
表1. 不同放大器組合的帶寬擴(kuò)展,增益為10,VOUT = 10 V p-p VOUT = 10 V p-p
保持直流精度
圖9. 運(yùn)算放大器反饋環(huán)路
在典型運(yùn)算放大器電路中,輸出的一部分會(huì)被反饋到反相輸入。輸出端存在的誤差(環(huán)路中產(chǎn)生)乘以反饋因子(β),然后予以扣除。這有助于保持輸出相對(duì)于輸入乘以閉環(huán)增益(A)的保真度。
圖10. 復(fù)合放大器反饋環(huán)路
對(duì)于復(fù)合放大器,放大器A2有自己的反饋環(huán)路,但A2及其反饋環(huán)路都在A1的較大反饋環(huán)路內(nèi)。輸出現(xiàn)在包含A2引起的較大誤差,這些誤差被反饋到A1并進(jìn)行校正。較大的校正信號(hào)導(dǎo)致A1的精度得以保留。
在圖11所示電路和圖12所示結(jié)果中可以清楚地看到該復(fù)合反饋環(huán)路的影響。圖11顯示了一個(gè)由兩個(gè)理想運(yùn)算放大器組成的復(fù)合放大器。復(fù)合增益為100,AMP2增益設(shè)置為5。 VOS1 表示AMP1的50μV失調(diào)電壓,而 VOS2 表示AMP2的可變失調(diào)電壓。圖12顯示,當(dāng) VOS2 從0 mV掃描到100 mV時(shí),輸出失調(diào)不受AMP2貢獻(xiàn)的誤差(失調(diào))幅度的影響。相反,輸出失調(diào)僅與AMP1的誤差(50μV乘以復(fù)合增益100)成比例,并且無(wú)論 VOS2的值是多少,它都保持在5 mV。如果沒有復(fù)合環(huán)路,我們預(yù)計(jì)輸出誤差會(huì)高達(dá)500 mV。
圖11. 失調(diào)誤差貢獻(xiàn)
圖12. 復(fù)合輸出失調(diào)與 VOS2的關(guān)系
表2. 增益為100時(shí)的輸出失調(diào)電壓
噪聲和失真
復(fù)合放大器的輸出噪聲和諧波失真以與直流誤差類似的方式進(jìn)行校正,但對(duì)于交流參數(shù),兩級(jí)的帶寬也會(huì)起作用。我們將舉一個(gè)例子,使用輸出噪聲來(lái)說明這一點(diǎn);同時(shí)應(yīng)理解,失真消除方式大致相同。
參考圖13所示電路,只要第一級(jí)(AMP1)有足夠的帶寬,它就會(huì)校正第二級(jí)(AMP2)的較大噪聲。當(dāng)AMP1的帶寬開始耗盡時(shí),來(lái)自AMP2的噪聲將開始占主導(dǎo)地位。但是,如果AMP1帶寬過多,并且頻率響應(yīng)中存在峰化,那么在相同頻率處將產(chǎn)生噪聲峰值。
圖13. 復(fù)合放大器的噪聲源
對(duì)于此例,圖13中的電阻R5和R6分別代表AMP1和AMP2的固有噪聲源。圖14的上部曲線顯示了各種AMP1帶寬的頻率響應(yīng)以及單一固定帶寬的AMP2的頻率響應(yīng)。回憶增益分配部分,若復(fù)合增益為100 (40 dB),AMP2增益為5 (14 dB),則AMP1的有效增益將為 20 (26 dB),如此處所示。
下部曲線顯示了每種情況的寬帶輸出噪聲密度。在低頻時(shí),輸出噪聲密度以AMP1為主(1 nV/√HZ乘以100的復(fù)合增益等于100 nV/√HZ)。只要AMP1有足夠的帶寬來(lái)補(bǔ)償AMP2,這種情況就會(huì)持續(xù)下去。
若AMP1帶寬小于AMP2帶寬,當(dāng)AMP1帶寬開始滾降時(shí),噪聲密度將開始由AMP2主導(dǎo)。這可以在圖14的兩條跡線中看到,噪聲上升至200 nV/√HZ(40 nV/√HZ乘以AMP2的增益5)。最后,若AMP1具有比AMP2大得多的帶寬,導(dǎo)致頻率響應(yīng)出現(xiàn)峰化,則復(fù)合放大器將在相同頻率處呈現(xiàn)噪聲峰值,如圖14所示。由于頻率響應(yīng)峰化引起過大增益,噪聲峰值的幅度也會(huì)更高。
圖14. 噪聲性能與第一級(jí)帶寬的關(guān)系
表3和表4分別顯示了使用不同精密放大器作為第一級(jí)與AD8397形成復(fù)合放大器時(shí)的有效噪聲降低情況和THD+n改善情況。
表3. 使用不同前端放大器的降噪情況,有效增益 = 100, f = 1 kHz
表4. 使用不同前端放大器的THD+n比較,有效增益 = 10, f = 1 kHz, ILOAD = 200 mA
系統(tǒng)級(jí)應(yīng)用
圖15. DAC輸出驅(qū)動(dòng)器的應(yīng)用電路
在此示例中,DAC輸出緩沖器應(yīng)用的目標(biāo)是為低阻抗探針提供10 V p-p的輸出,電流為500 mA p-p,要求低噪聲、低失真、出色的直流精度以及盡可能高的帶寬。DAC輸出的4 mA至20 mA電流將通過TIA轉(zhuǎn)換為電壓,然后轉(zhuǎn)換為復(fù)合放大器的輸入以進(jìn)一 步放大。輸出端的AD8397可滿足輸出要求。AD8397是一款軌到軌、高輸出電流放大器,能夠提供所需的輸出電流。
AMP1可以是任何具有配置所需直流精度的精密放大器。在此應(yīng)用中,各種前端精密放大器都能與AD8397(以及其他高輸出電流放大器)配合使用,以實(shí)現(xiàn)應(yīng)用所需的出色直流精度和高輸出驅(qū)動(dòng)能力。
圖16. AD8599和AD8397復(fù)合放大器的 VOUT 和 IOUT
表5. AD8599+AD8397復(fù)合放大器規(guī)格
此配置不限于AD8397和 AD8599, 其他放大器組合也是可行的,只要滿足輸出驅(qū)動(dòng)要求并提供出色的直流精度即可。表6和表7中的放大器也適合此應(yīng)用。
表6. 具有高輸出電流驅(qū)動(dòng)能力的放大器
表7. 精密前端放大器
結(jié)論
兩個(gè)放大器結(jié)合成復(fù)合放大器,可實(shí)現(xiàn)每個(gè)放大器的最佳規(guī)格,同時(shí)彌補(bǔ)各自的局限性。具有高輸出驅(qū)動(dòng)能力的放大器與精密前端放大器相結(jié)合,可為非常棘手的應(yīng)用提供解決方案。設(shè)計(jì)時(shí)務(wù)必考慮穩(wěn)定性、噪聲峰化、帶寬和壓擺率,以獲得最佳性能。有許多可能的方案來(lái)滿足各種應(yīng)用需求。正確的實(shí)施和組合可以實(shí)現(xiàn)應(yīng)用的恰當(dāng)平衡。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索