日趨普及的射頻能量采集技術(shù)
發(fā)布時(shí)間:2019-01-23 責(zé)任編輯:wenwei
【導(dǎo)讀】日常生活中的電子設(shè)備越來(lái)越多了,它們都需要某種形式的電源才能維持正常工作。幸運(yùn)的是,我們周圍存在很多種能量形式,既可以把風(fēng)能、光能、物體運(yùn)動(dòng)動(dòng)能轉(zhuǎn)換成電能,甚至從高頻無(wú)線電信號(hào)的傳輸中也可以收集部分能量。
相比之下沒(méi)有那么普遍但是正在迅速普及的則是從RF/微波信號(hào)中收集能量的方案,它可以從無(wú)線電/電視廣播站和無(wú)線設(shè)備上獲取能量。在物聯(lián)網(wǎng)(IoT)傳感器和射頻識(shí)別(RFID)標(biāo)簽等低功耗應(yīng)用中,這種能量收集方案可以替換電池。重復(fù)使用能量可以降低運(yùn)營(yíng)成本,并提高現(xiàn)有電子系統(tǒng)和設(shè)備的能源使用效率。
從RF中獲取能量
RF是能量收集的豐富來(lái)源,它正在從世界各地?cái)?shù)十億的無(wú)線電發(fā)射器中發(fā)射而出,這些發(fā)射器包括移動(dòng)電話、移動(dòng)電話基站和電視/電臺(tái)信號(hào)發(fā)射基站等。因此,利用射頻能量來(lái)為一些低功耗電路供電已經(jīng)成為一種趨勢(shì)。
從RF獲取能量的概念并不新鮮,而且過(guò)程相對(duì)簡(jiǎn)單。無(wú)線電波到達(dá)天線并導(dǎo)致其長(zhǎng)度上的電位差變化。該電位差使得電荷載流子沿著天線的長(zhǎng)度移動(dòng)以試圖使場(chǎng)均衡,并且RF-DC集成電路能夠從這些電荷載流子的移動(dòng)中捕獲能量。能量暫時(shí)存儲(chǔ)在電容器中,然后用于在負(fù)載處產(chǎn)生所需的電位差。
射頻能量信號(hào)是通過(guò)天線接收的,所以天線的工作頻率必須與所接收到信號(hào)的頻率相同,射頻信號(hào)通過(guò)天線接收后既可以用在RF-DC轉(zhuǎn)換器上又可以用在單純的RF應(yīng)用上;RF-DC轉(zhuǎn)換器將RF信號(hào)轉(zhuǎn)換為DC信號(hào),從而可以將獲取的能量存儲(chǔ)在能量?jī)?chǔ)存裝置中;能量?jī)?chǔ)存裝置可以給RF-DC轉(zhuǎn)換器、RF裝置、低功耗應(yīng)用提供能量。
可以創(chuàng)建一個(gè)電路,通過(guò)現(xiàn)成的組件為子系統(tǒng)執(zhí)行RF到DC轉(zhuǎn)換。利用天線,無(wú)線充電線圈,PMIC(電源管理IC),功率接收器芯片,激勵(lì)器發(fā)射器等的各種組合可以產(chǎn)生能夠從RF獲取能量的系統(tǒng)。
射頻能量信號(hào)是通過(guò)天線接收的,所以天線的工作頻率必須與所接收到信號(hào)的頻率相同,射頻信號(hào)通過(guò)天線接收后既可以用在RF-DC轉(zhuǎn)換器上又可以用在單純的RF應(yīng)用上;RF-DC轉(zhuǎn)換器將RF信號(hào)轉(zhuǎn)換為DC信號(hào),從而可以將獲取的能量存儲(chǔ)在能量?jī)?chǔ)存裝置中;能量?jī)?chǔ)存裝置可以給RF-DC轉(zhuǎn)換器、RF裝置、低功耗應(yīng)用提供能量。
天線
發(fā)射信號(hào)的天線有很多種,如手機(jī)基站、電視信號(hào)發(fā)射塔和WIFI路由器等;接收信號(hào)的天線則屬于射頻能量收集器的一部分,通過(guò)它接收外界的射頻信號(hào)來(lái)進(jìn)行后續(xù)工作。
在任何移動(dòng)設(shè)備中天線的設(shè)計(jì)都是相當(dāng)重要的。平面貼片天線是一種形狀適宜、重量輕、易于操作的天線。然而,其本身卻也不那么小。
一種減小天線尺寸的方法是在高介電常數(shù)的材料上制備貼片天線。一般來(lái)說(shuō),單個(gè)的天線不能收集到足夠的能量去驅(qū)動(dòng)一個(gè)器件,多天線結(jié)構(gòu)可以獲取一個(gè)更大范圍的射頻能量。
一個(gè)設(shè)計(jì)良好的天線應(yīng)該能夠具有獲取整個(gè)頻帶能量的功能,這對(duì)于計(jì)算整個(gè)頻帶的能量是非常重要的。輸入射頻功率密度是在結(jié)合了所有頻譜后計(jì)算出來(lái)的。
RF-DC轉(zhuǎn)換電路
RF-DC轉(zhuǎn)換電路是能量收集器的核心部分,主要功能是將接收到的射頻信號(hào)轉(zhuǎn)換為直流信號(hào)。電路主要由阻抗匹配、整流器和電源管理三部分組成。
通常來(lái)說(shuō)用單個(gè)硅整流天線二極管為設(shè)備提供能量是遠(yuǎn)遠(yuǎn)不夠的,使用多個(gè)相互連接的天線可以提供足夠的能量。
如圖(a)所示,一種結(jié)構(gòu)是在整流器前并聯(lián)多個(gè)天線,匯總RF信號(hào)再進(jìn)行整流。在點(diǎn)對(duì)點(diǎn)的射頻系統(tǒng)中(窄基帶),這種結(jié)構(gòu)的能量轉(zhuǎn)移是最有效的;如圖(b)所示,另一種結(jié)構(gòu)則是每個(gè)天線對(duì)應(yīng)一個(gè)整流器,先進(jìn)行整流再匯總直流信號(hào),對(duì)于大型硅整流二極管天線和射頻能量收集(消除隨機(jī)偏振的影響),這種結(jié)構(gòu)是最合適的。
能量?jī)?chǔ)存
在能量?jī)?chǔ)存方面可以利用傳統(tǒng)的充電電池、新型薄膜電池以及電容對(duì)能量進(jìn)行儲(chǔ)存。但電池存在可充電次數(shù)有限,需要更換等缺點(diǎn)。這就需要考慮采用新的存儲(chǔ)方案,例如使用超級(jí)電容。傳統(tǒng)超級(jí)電容為電化學(xué)雙層電容器(EDLC),這種電容已經(jīng)有30多年的使用歷史了。EDLC是在必須被頻繁更換的電池與在使用封裝下無(wú)法提供足夠電荷存儲(chǔ)的靜電/電解電容之間的最好產(chǎn)品。
能量收集器的難點(diǎn)
設(shè)計(jì)能量收集器的難點(diǎn)有三個(gè),分別是天線、靈敏度和轉(zhuǎn)換效率。
就天線而言,雖然科學(xué)工作者經(jīng)過(guò)多年努力已經(jīng)在設(shè)計(jì)技術(shù)方面取得了不小的成果,但是天線的小型化、寬頻帶問(wèn)題仍是射頻能量收集技術(shù)的關(guān)鍵。原因是要將其應(yīng)用在較小的設(shè)備上就必須要求天線小型化,占用空間小;其次,空間中的射頻能量比較低,所分布頻帶比較散,所以要求天線必須具有寬頻帶的特點(diǎn)。
就靈敏度而言,靈敏度決定了能量收集器工作的最大范圍。射頻能量比較低時(shí),對(duì)其進(jìn)行收集需要靈敏度較高的射頻能量收集器。影響靈敏度的因素主要有:天線與整流器之間的匹配情況、整流器件閾值電壓的影響等。經(jīng)科研工作者不斷努力,靈敏度雖已得到提高,但前提是需要使用幾十級(jí)的整流電路,這就導(dǎo)致芯片面積增加、寄生參數(shù)增加等一系列問(wèn)題。
就轉(zhuǎn)換效率而言,功率轉(zhuǎn)換效率是收集器的一個(gè)重要指標(biāo),當(dāng)射頻信號(hào)能量比較低時(shí)轉(zhuǎn)換效率會(huì)迅速降低。目前提高效率的方法有采用外部閾值、內(nèi)部閾值、自閾值的補(bǔ)償以實(shí)現(xiàn)對(duì)整流MOS管進(jìn)行閾值補(bǔ)償加快其導(dǎo)通速度等方法。但這些技術(shù)效果還不是很理想,需要進(jìn)一步改進(jìn)或者發(fā)展其他新方法。
射頻能量采集技術(shù)的發(fā)展現(xiàn)狀及應(yīng)用
近年來(lái),超低功耗、低電壓電子元器件及電路的大量出現(xiàn)以及現(xiàn)實(shí)生活中大量不易更換電池的電子微系統(tǒng)的廣泛使用,引起了人們對(duì)環(huán)境射頻能量收集技術(shù)研究的廣泛關(guān)注。 當(dāng)前,環(huán)境射頻能量收集的研究及應(yīng)用主要在低功耗且不易更換電池的無(wú)線傳感網(wǎng)絡(luò)節(jié)點(diǎn)及植入式電子設(shè)備等方面。
1、無(wú)線傳感器網(wǎng)絡(luò)方面的應(yīng)用
無(wú)線傳感器網(wǎng)絡(luò)具有廣泛的應(yīng)用價(jià)值,涉及工業(yè)、農(nóng)業(yè)、水文、軍事、生物醫(yī)學(xué)等各個(gè)領(lǐng)域。 當(dāng)前,電池仍然是無(wú)線傳感器網(wǎng)絡(luò)的主要能量來(lái)源,但是電池的壽命、尺寸以及維護(hù)和更換費(fèi)用等,在某些場(chǎng)合是不能忍受的。 如在智能建筑中,每個(gè)建筑物至少有上百個(gè)的傳感器節(jié)點(diǎn)分布于建筑體中的各個(gè)部位,用于監(jiān)測(cè)溫度、亮度、人流量等參數(shù);通過(guò)布線為這些傳感器節(jié)點(diǎn)提供電源,其代價(jià)是十分昂貴的,而采用電池供電主要面臨的問(wèn)題是往后如何判斷哪些節(jié)點(diǎn)的電池已耗盡并進(jìn)行更換,這在商業(yè)上是難以接受的,而采用環(huán)境射頻能量收集技術(shù)輔以可充電電池則是其比較理想的供電方式 。
近幾年,環(huán)境射頻能量收集技術(shù)在低功耗、分布廣、不易更換電池的無(wú)線傳感器網(wǎng)絡(luò)的應(yīng)用研究取得了一些進(jìn)展。
此外,還有不少應(yīng)用環(huán)境射頻能量為低功耗無(wú)線設(shè)備提供電能的能量收集器,它們分別利用不同的射頻源,如 采用環(huán)境 GSM 信號(hào)作為射頻源, 采用環(huán)境 WiFi 信號(hào)作為射頻源。
2、生物醫(yī)學(xué)電子方面的應(yīng)用
隨著通信、計(jì)算機(jī)、傳感器以及微納電子技術(shù)等領(lǐng)域的研究不斷取得突破,生物醫(yī)學(xué)電子系統(tǒng)正朝集成化、微型化、無(wú)線化及智能化等方向迅速發(fā)展;同時(shí)隨著老齡化社會(huì)的到來(lái)以及人們生活水平的提高,各種應(yīng)用需求應(yīng)運(yùn)而生,生物醫(yī)學(xué)電子設(shè)備的體積更小、功耗更低。 電池是低功耗穿戴式或植入式生物醫(yī)學(xué)電子設(shè)備當(dāng)前的主要能量來(lái)源,但為了穿戴的舒適性或更易于植入,自供電顯然是其最佳選擇,不少科技工作者對(duì)此展開了研究。
此外,射頻能量經(jīng)過(guò)收集、轉(zhuǎn)換,還可有望應(yīng)用于其它可穿戴式低功耗設(shè)備、無(wú)線供電手持設(shè)備、RFID 標(biāo)簽、非接觸式晶圓級(jí)測(cè)試等場(chǎng)合 ,具有廣闊的應(yīng)用前景。
當(dāng)前,環(huán)境射頻能量收集技術(shù)正朝著小型化、集成化、陣列化、智能化等方向發(fā)展。 智能化就是通過(guò)一定的優(yōu)化算法或自適應(yīng)控制技術(shù)使其效率最大化;小型化、集成化的目標(biāo)是將射頻能量收集器甚至接收天線集成到用電系統(tǒng)芯片中。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖