了解鏡像抑制及其對(duì)所需信號(hào)的影響
發(fā)布時(shí)間:2018-01-31 來(lái)源:Patrick Wiers 責(zé)任編輯:wenwei
【導(dǎo)讀】AD9361 和 AD9371 RadioVerse™ 寬帶收發(fā)器系列均提供無(wú)與倫比的集成度、眾多的功能和大量用戶可選選項(xiàng)。這兩個(gè)系列在幾個(gè)主要方面表現(xiàn)出明顯不同的性能水平,而且兩者的功耗也有很大差異。鏡像抑制是區(qū)分這兩個(gè)系列的性能之一。本文探討了鏡像的來(lái)源、含義及其對(duì)整體系統(tǒng)性能的影響方式。掌握了這些信息,客戶便可做出明智決策并選擇適合應(yīng)用的收發(fā)器。
鏡像抑制基礎(chǔ)知識(shí)
AD9361和AD9371系列均使用零中頻(亦稱為zero-IF或ZIF)架構(gòu)實(shí)現(xiàn)極高的集成度并顯著減少系統(tǒng)中頻率相關(guān)組件的數(shù)量。如圖1中的AD9371功能框圖所示,主接收信號(hào)路徑和主發(fā)送信號(hào)路徑使用一個(gè)復(fù)數(shù)混頻器級(jí),在以本振 (LO) 頻率為中心的射頻 (RF) 和以直流為中心的基帶之間進(jìn)行轉(zhuǎn)換。為了更好地了解ZIF收發(fā)器中使用的復(fù)數(shù)混頻器,請(qǐng)參閱本文末尾引用的復(fù)數(shù)RF混頻器相關(guān)文章。1
圖1. RadioVerse AD9371收發(fā)器功能框圖。
盡管憑借這樣的高集成度提供了許多優(yōu)勢(shì),但ZIF無(wú)線電器件也帶來(lái)了挑戰(zhàn)。復(fù)數(shù)混頻器具有同相 (I) 信號(hào)和正交相 (Q) 信號(hào)。一旦這些信號(hào)的相位或幅度出現(xiàn)任何不匹配,組合上變頻的I信號(hào)和Q信號(hào)時(shí)會(huì)導(dǎo)致求和和消除性能下降。上面引用的文章中描述了這一點(diǎn)。當(dāng)發(fā)送所需信號(hào)時(shí),不完美的消除會(huì)導(dǎo)致在該信號(hào)本振 (LO) 頻率的相反側(cè)出現(xiàn)該信號(hào)的反相副本。這一信號(hào)副本被稱為鏡像,與其對(duì)應(yīng)的所需信號(hào)相比,幅度更小。同樣,當(dāng)接收所需信號(hào)時(shí),所需信號(hào)的反相副本會(huì)出現(xiàn)在該信號(hào)直流的相反側(cè)。在其他架構(gòu)(例如超外差架構(gòu))中,可以在中間級(jí)進(jìn)行鏡像濾波。ZIF架構(gòu)的主要優(yōu)勢(shì)是去除了這些濾波器和中間混頻器級(jí),但這需要極佳的I和Q平衡才能將鏡像幅度降低到可接受水平。
圖2中經(jīng)過簡(jiǎn)化的接收信號(hào)路徑示意圖顯示了這些不匹配與A、fC和φ指定的不匹配發(fā)生的位置。只有一條路徑顯示失配的相位,因?yàn)樗切纬社R像的信號(hào)路徑之間的不平衡,而不是信號(hào)路徑的絕對(duì)增益和相位。因此,在一條路徑中顯示所有不平衡因素,這在數(shù)學(xué)上是正確的。圖2所示的復(fù)數(shù)混頻器也稱為正交混頻器,因?yàn)樘峁┙o混頻器的兩個(gè)LO信號(hào)彼此正交。
圖2. 經(jīng)過簡(jiǎn)化顯示信號(hào)損傷的正交接收器信號(hào)路徑。
圖3例示了使用單音或連續(xù)波 (CW) 的有用信號(hào)以及因此形成的無(wú)用CW鏡像。有用信號(hào)被下變頻到頻率ωC。如果正交平衡不完美,鏡像將在頻率為-ωC時(shí)出現(xiàn)。鏡像抑制比 (IRR) 是有用信號(hào)與無(wú)用鏡像信號(hào)之差,用分貝 (dB) 表示。降低正交失配的方式被稱為正交誤差校正 (QEC)。
圖3. 單音有用信號(hào)和干擾鏡像。
鏡像幅度與增益和相位不匹配有關(guān),關(guān)系式如下所示:
其中:
Δ = 幅度不平衡(用分貝 (dB) 表示,理想值為1)
θ = 相位誤差(用度 (°) 表示,理想值為0)
等式1可得出二維矩陣,因?yàn)閮蓚€(gè)輸入變量分別會(huì)導(dǎo)致鏡像抑制性能下降。圖4顯示了該矩陣的一部分,其中穿過整個(gè)頁(yè)面的軸是幅度不平衡,進(jìn)入到頁(yè)內(nèi)的軸是相位不平衡,垂直的軸是鏡像抑制(單位:dB)。例如,如果幅度誤差為0.00195且系統(tǒng)需要實(shí)現(xiàn)76 dB的鏡像抑制,則相位誤差必須優(yōu)于0.01286°。即使在單個(gè)集成電路器件中,也很難通過控制影響I和Q匹配的所有因素來(lái)達(dá)到優(yōu)于50 dB的鏡像抑制。使用AD9371通??蓪?shí)現(xiàn)76 dB的鏡像抑制,這需要運(yùn)用數(shù)字算法來(lái)控制模擬路徑變量并在數(shù)字域中應(yīng)用校正。
圖4. 鏡像抑制(單位:dB)與幅度不平衡(單位:dB)和相位不平衡(單位:°)之間的關(guān)系。
鏡像對(duì)有用信號(hào)的影響
圖5是一張簡(jiǎn)化圖,顯示了下變頻之后波形以直流為中心的單載波情形。該波形的示例將是20MHz LTE下行鏈路OFDM信號(hào)的單一實(shí)例。如圖5所示,負(fù)側(cè)的一部分有用信號(hào)將在正側(cè)具有鏡像,反之亦然。在以直流為中心的單載波情形中,鏡像在有用信號(hào)內(nèi)(或其之上)并破壞了有用信號(hào)。
圖5. 具有干擾鏡像的單調(diào)制載波。
當(dāng)接收信號(hào)并隨后解調(diào)該信號(hào)時(shí),將存在若干信號(hào)損傷。增加接收信號(hào)路徑本底噪聲的熱噪聲就是一個(gè)例子。如果鏡像在有用信號(hào)內(nèi),也會(huì)增加噪聲。如果所有噪聲源的總和過高,則無(wú)法對(duì)信號(hào)進(jìn)行解調(diào)。單載波圖和多載波圖中所示的熱噪底就是一個(gè)例子,它作為一個(gè)促成因素在這些討論中被忽略了。
當(dāng)使用AD9361的內(nèi)部LO(適用于具有推薦性能的參考時(shí)鐘源)時(shí),AD9361將在無(wú)噪底限制時(shí)實(shí)現(xiàn)約-40 dB的EVM。通過RF PLL的相位噪聲將EVM限制在-40 dB。AD9361約50 dBc的鏡像抑制性能意味著在圖5所示的單載波情形中,僅靠鏡像只能將EVM降低約0.5dB。這樣低的EVM降低意味著收發(fā)器通常不是64-QAM(甚至更高)調(diào)制方案的限制因素。在這種單載波情形中,鏡像總是比有用信號(hào)小50 dB左右,如圖5所示。
圖6顯示了多載波的例子。圖中的有用信號(hào)在下變頻之后發(fā)生了直流失調(diào)。
圖6. 信號(hào)1破壞了信號(hào)2導(dǎo)致多載波調(diào)制信號(hào)具有干擾鏡像。
每個(gè)有用信號(hào)的鏡像通過直流反射并顯示在頻譜的相反側(cè)。在該示例中,兩個(gè)有用信號(hào)已經(jīng)被下變頻到相同的直流失調(diào),有用信號(hào)1在正側(cè),有用信號(hào)2在負(fù)側(cè)。需要注意的是,有用信號(hào)2的幅度比有用信號(hào)1的幅度低60 dB。兩個(gè)載波具有不同幅度在多載波情形下屢見不鮮,如果來(lái)自兩個(gè)移動(dòng)電臺(tái)的信號(hào)行進(jìn)到同一基站時(shí)遇到不同量的路徑損耗,便會(huì)發(fā)生上述情況。如果這兩個(gè)移動(dòng)電臺(tái)與基站的距離不同,或其中一個(gè)移動(dòng)電臺(tái)通過除另一個(gè)移動(dòng)電臺(tái)外的對(duì)象或在其周圍發(fā)送信號(hào)時(shí),可能發(fā)生這種情況。
有用信號(hào)2的幅度比有用信號(hào)1鏡像的幅度低10dB。這表示有用信號(hào)2的信噪比為-10dB。即使使用的是最簡(jiǎn)單的調(diào)制技術(shù),也很難實(shí)現(xiàn)解調(diào)。顯然,需要更好的鏡像抑制性能來(lái)應(yīng)對(duì)這些情況。
圖7顯示相同的情況,但采用AD9371典型的接收鏡像抑制性能。
圖7. 信號(hào)1幅度低于信號(hào)2幅度導(dǎo)致多載波調(diào)制信號(hào)具有干擾鏡像。
有用信號(hào)1鏡像的幅度現(xiàn)在比有用信號(hào)2的幅度低15 dB。因此信噪比為15dB,足以使用各種調(diào)制方案來(lái)解調(diào)有用信號(hào)2。
可減少AD9361和AD9371中正交不平衡的技術(shù)
AD9361和AD9371都優(yōu)化了模擬信號(hào)和LO路徑,從本質(zhì)上減少了正交不平衡。但如上所述,硅片能夠帶來(lái)的好處是有限的。數(shù)字校正可以將鏡像抑制性能提高若干個(gè)數(shù)量級(jí)。
AD9361接收器正交校準(zhǔn)使用一種算法來(lái)分析接收到的整個(gè)數(shù)據(jù)頻譜,從而在整個(gè)帶寬上創(chuàng)建平均校正。對(duì)于單載波用例和相對(duì)較窄的帶寬(如20 MHz),該校正在目標(biāo)帶寬上會(huì)產(chǎn)生良好的鏡像抑制。這被稱為非頻率相關(guān)算法。該算法對(duì)接收到的數(shù)據(jù)執(zhí)行操作并實(shí)時(shí)更新。
AD9371在通過注入測(cè)試音進(jìn)行初始化期間以及使用實(shí)際接收到的數(shù)據(jù)進(jìn)行操作期間運(yùn)行接收鏡像抑制校準(zhǔn)。這些更先進(jìn)的校準(zhǔn)可根據(jù)頻率相關(guān)不平衡以及非頻率相關(guān)不平衡進(jìn)行調(diào)整。該算法會(huì)實(shí)時(shí)更新。AD9371采用更先進(jìn)的算法和電路實(shí)施校正,在占用的信號(hào)帶寬上的性能優(yōu)于AD9361,兩者之差約為25 dB。
本文介紹了使用接收信號(hào)路徑的正交不平衡的起源和影響,但ZIF收發(fā)器也必須克服發(fā)射信號(hào)路徑中的相同問題。當(dāng)信號(hào)路徑或LO路徑不平衡時(shí),發(fā)射器的輸出包括有用信號(hào)及其鏡像。
對(duì)于發(fā)送信號(hào)路徑,AD9361使用初始化校準(zhǔn)來(lái)減少優(yōu)化硬件設(shè)計(jì)提供的正交不平衡。初始化校準(zhǔn)使用處于單一頻率且采用單一衰減設(shè)置的CW信號(hào)音。該算法通常導(dǎo)致功耗比有用信號(hào)低50dB左右的鏡像。另一種寫入方式是-50 dBc(低于載波的分貝值)。在過溫、寬帶寬或不同衰減設(shè)置條件下運(yùn)行可能會(huì)影響鏡像水平。
AD9371使用分布在有用信號(hào)帶寬上的多個(gè)內(nèi)部生成的信號(hào)音進(jìn)行初始發(fā)送路徑校準(zhǔn),并確定跨多個(gè)發(fā)送衰減設(shè)置的校正系數(shù)。運(yùn)行期間,發(fā)送信號(hào)路徑跟蹤校準(zhǔn)使用實(shí)際發(fā)送的數(shù)據(jù)并定期更新校正系數(shù)。AD9371的鏡像抑制性能優(yōu)于AD9361(兩者之差約為15 dB),并且在過溫和衰減條件下以及占用的信號(hào)帶寬上可體現(xiàn)這一優(yōu)勢(shì)。
具體的簡(jiǎn)化示例
到目前為止,根據(jù)本文所涵蓋的全部?jī)?nèi)容,讓我們進(jìn)行思考實(shí)驗(yàn),假設(shè)我們正在構(gòu)建一個(gè)系統(tǒng),其中包含一個(gè)中心基站和多個(gè)客戶端設(shè)備。為了簡(jiǎn)化示例,這一假設(shè)的系統(tǒng)在運(yùn)行時(shí)會(huì)遠(yuǎn)離建筑物等可導(dǎo)致多路徑的物體?;緦⑴c覆蓋區(qū)域半徑可擴(kuò)展到100米的客戶端設(shè)備進(jìn)行通信,如圖8所示。
圖8. 形象顯示基站和客戶端基站的蜂窩覆蓋區(qū)域。
該系統(tǒng)將在18 MHz的總帶寬上使用多個(gè)同時(shí)發(fā)送的6 MHz寬載波。因此在這個(gè)系統(tǒng)中,一個(gè)客戶端設(shè)備可能非常接近基站,比如0.3米,而最遠(yuǎn)的客戶端設(shè)備與基站之間的距離當(dāng)然就是100米。兩者之間的自由空間路徑損耗差約為50dB。另外假定基站基帶處理器可以測(cè)量接收功率,然后通知客戶端將發(fā)射功率增加或減少高達(dá)10 dB。附近的客戶端將減少10dB的發(fā)射功率,而最遠(yuǎn)端的客戶端將以全功率發(fā)射?;镜慕邮展β室虼私档?0 dB,形成40 dB的總體電位差,如圖9所示。顯示的兩個(gè)載波表示上述最差情況。為了清楚起見,省略了可以駐留在兩個(gè)有用信號(hào)之間的可選載波。
圖9. 多載波調(diào)制信號(hào)示例。
在這個(gè)系統(tǒng)中,假定基站和客戶端使用相同的收發(fā)器。如果使用AD9361,發(fā)送鏡像的幅度可能比有用信號(hào)的幅度低50 dB左右。接收器也將增加類似的鏡像功率。兩個(gè)正交不平衡組合起來(lái)形成比有用信號(hào)低47 dB左右的鏡像。
如果AD9371用于鏈路的兩端,則發(fā)送鏡像的幅度通常會(huì)下降65 dB,并且接收器會(huì)使鏡像比有用信號(hào)低75 dB。將這兩者相加,可以得到比有用信號(hào)低64.5 dB左右的總鏡像。圖10顯示了兩種結(jié)果。
圖10. 鏡像幅度不同的AD9361和AD9371多載波調(diào)制信號(hào)示例。
在這個(gè)簡(jiǎn)化的示例中,我們只考慮鏡像的影響,而忽略對(duì)SNR的影響,如熱噪聲、相位噪聲和非線性度。其中,AD9361可實(shí)現(xiàn)約7dB的SNR,而AD9371則可實(shí)現(xiàn)約24.5dB的SNR。如果在該系統(tǒng)中使用64-QAM等復(fù)雜調(diào)制方案,AD9371可能由于總體系統(tǒng)SNR要求而成為最佳選擇。如果使用QPSK等更簡(jiǎn)單的調(diào)制方案,那么選擇AD9361即可,滿足要求綽綽有余。在基帶處理器中使用的技術(shù)將確定解調(diào)信號(hào)所需的實(shí)際系統(tǒng)SNR。當(dāng)然,從這個(gè)思考實(shí)驗(yàn)轉(zhuǎn)向一個(gè)真正的系統(tǒng),必須考慮熱噪聲等以前忽略的影響。
結(jié)論
之前給出的兩個(gè)收發(fā)器正交校正算法的圖示和描述集中在接收信號(hào)路徑上。由于相同的原因,干擾鏡像的影響也適用于發(fā)送路徑。位于較小載波之上的發(fā)送鏡像對(duì)于接收信號(hào)的基站來(lái)說(shuō)同樣麻煩。
描述收發(fā)器用以降低鏡像水平的技術(shù)的部分顯示了兩個(gè)不同器件系列實(shí)現(xiàn)的量化差異。隨后我們根據(jù)上述具體示例進(jìn)行系統(tǒng)設(shè)計(jì),并將設(shè)計(jì)決策范圍縮小到一些簡(jiǎn)短的與解調(diào)接收信號(hào)所需的SNR相關(guān)問題。雖然AD9371系列的鏡像性能總是優(yōu)于AD9361系列,但是AD9371系列的功耗更高并且使用高速串行接口,這就要求系統(tǒng)工程師能夠查看設(shè)計(jì)的各個(gè)方面,并為其應(yīng)用找到最佳解決方案。
本文轉(zhuǎn)載自亞德諾半導(dǎo)體。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖