【推薦閱讀】
智能家居中紅外遙控模塊的設(shè)計(jì)方案
發(fā)布時(shí)間:2016-04-06 責(zé)任編輯:wenwei
【導(dǎo)讀】本文通過遙控技術(shù)和單片機(jī)的相互結(jié)合設(shè)計(jì)在智能家居應(yīng)用的燈光控制系統(tǒng),該系統(tǒng)是基于單片機(jī)的控制系統(tǒng),用遙控的方式對(duì)系統(tǒng)燈光進(jìn)行控制。本方案主要解決信號(hào)的發(fā)射和接收,在信號(hào)的處理接收之后對(duì)不同信號(hào)的程序處理,通過軟件編程實(shí)現(xiàn)對(duì)燈泡的開關(guān)和亮度調(diào)節(jié)。
引言
智能家居是指利用先進(jìn)的計(jì)算機(jī)技術(shù)、網(wǎng)絡(luò)通信技術(shù)、綜合布線技術(shù) ,將與家居生活有關(guān)的各種子系統(tǒng)有機(jī)地結(jié)合在一起 ,通過統(tǒng)籌管理 ,讓家居生活更加舒適、安全、有效。
隨著人們生活水平的提高和電子技術(shù)的發(fā)展,家居智能化已經(jīng)開始走進(jìn)了我們?nèi)粘5纳?。人們已?jīng)不滿足于按鍵式的手動(dòng)開關(guān)來控制燈具,從而開發(fā)出了智能化水平更高的專業(yè)照明控制的遙控系統(tǒng),其成本低,質(zhì)量高,應(yīng)用靈活方便。而由于具有體積小、功耗低、功能強(qiáng)、成本低的特點(diǎn),紅外線遙控已經(jīng)是目前應(yīng)用最廣泛的一種通信和遙控手段。
1 紅外線遙控基本原理
紅外線遙控就是利用紅外線(又稱紅外光)來傳遞控制信號(hào),實(shí)現(xiàn)對(duì)控制對(duì)象的遠(yuǎn)距離控制。具體來講,就是由發(fā)射器發(fā)出紅外線指令信號(hào),由接收器接收下來并對(duì)信號(hào)進(jìn)行處理并識(shí)別,再通過相應(yīng)的控制芯片,最后根據(jù)接收到的不同信號(hào)實(shí)現(xiàn)對(duì)控制對(duì)象的各種功能的遠(yuǎn)距離控制。
紅外線發(fā)射器由指令按鍵、信號(hào)產(chǎn)生電路、頻率調(diào)制電路、驅(qū)動(dòng)電路及紅外線發(fā)射器件組成,如圖1 所示。當(dāng)指令鍵按下時(shí),指令信號(hào)產(chǎn)生電路便產(chǎn)生所需要的控制指令信號(hào)。
這里的控制指令信號(hào)是以某些不同的特征來區(qū)分的。常用的區(qū)分指令信號(hào)的特征是頻率特征和碼組特征,即用不同的頻率或不同的編碼的電信代號(hào)代表不同的指令。這些不同的指令信號(hào)經(jīng)過頻率調(diào)制,最后由驅(qū)動(dòng)電路驅(qū)動(dòng)紅外線發(fā)射器件,發(fā)出紅外線遙控指令信號(hào)。
圖1 紅外線發(fā)射的組成
紅外接收器由紅外線接收器件、前置放大電路、信號(hào)解調(diào)電路、指令檢測(cè)電路組成,如圖2。當(dāng)紅外線接收器件接收到發(fā)射器的紅外線指令信號(hào)時(shí),它將紅外光信號(hào)變?yōu)殡娦盘?hào)并送入前置放大器進(jìn)行放大,再經(jīng)解調(diào)器解調(diào)后由指令信號(hào)檢出電路將指令信號(hào)檢出,實(shí)現(xiàn)各種操作。
圖2紅外線接收器的組成
要實(shí)現(xiàn)系統(tǒng)的遙控功能,就必須先選擇信號(hào)指令傳送的方式。根據(jù)遙控的方式和使用者場(chǎng)合不同,可以把這些控制信號(hào)特征進(jìn)行各種組合編碼。如電壓極性的組合方式,電信號(hào)相位的組合方式,電信號(hào)幅值的組合方式,頻率的組合方式,脈沖的寬度、相位、幅度等參數(shù)的組合方式及脈沖編碼組合方式等。脈沖編碼組合方式具有指令容量大,抗干擾能力強(qiáng),保密性好及便于用邏輯電路來實(shí)現(xiàn)等優(yōu)點(diǎn),得到了廣泛的應(yīng)用。
2 系統(tǒng)硬件電路設(shè)計(jì)方案
紅外遙控電路由發(fā)射電路和接收電路組成,發(fā)射部分由按鍵開關(guān)電路、控制芯片和紅外發(fā)射電路三部分組成。當(dāng)按下遙控按鈕時(shí),單片機(jī)產(chǎn)生相應(yīng)的控制信號(hào),經(jīng)紅外發(fā)射二極管發(fā)射出去。接收部分由紅外接收頭、控制芯片、調(diào)光電路組成,當(dāng)紅外接收器接收到控制脈沖后,經(jīng)單片機(jī)處理,判斷是否對(duì)電燈進(jìn)行調(diào)光或開關(guān),根據(jù)需要執(zhí)行相應(yīng)的操作,接收系統(tǒng)采用的是5 伏單電源電壓供電。如下圖所示:
圖3 系統(tǒng)設(shè)計(jì)框圖
2.1 遙控系統(tǒng)主控芯片
在本系統(tǒng)中選擇的是51 系列的AT89C51($3.7500)芯片,AT89C51是一種帶4k字節(jié)閃爍可編程可擦除只讀存儲(chǔ)器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低電壓,高性能CMOS 8 位微處理器,俗稱單片機(jī)。該器件采用ATMEL 高密度非易失存儲(chǔ)器制造技術(shù)制造,與工業(yè)標(biāo)準(zhǔn)的MCS-51 指令集和輸出管腳相兼容。由于將多功能8 位CPU 和閃爍存儲(chǔ)器組合在單個(gè)芯片中,ATMEL 的AT89C51 是一種高效微控制器,為很多嵌入式控制系統(tǒng)提供了一種靈活性高且價(jià)廉的方案。AT89C51 是一個(gè)低功耗高性能單片機(jī),40 個(gè)引腳,32 個(gè)外部雙向輸入/輸出(I/O)端口,同時(shí)內(nèi)含2 個(gè)外中斷口,2 個(gè)16 位可編程定時(shí)計(jì)數(shù)器,2 個(gè)全雙工串行通信口,AT89C51 可以按照常規(guī)方法進(jìn)行編程,也可以在線編程。
其將通用的微處理器和Flash 存儲(chǔ)器結(jié)合在一起,特別是可反復(fù)擦寫的Flash 存儲(chǔ)器可有效地降低開發(fā)成本。
2.2 紅外發(fā)射電路模塊
在本系統(tǒng)設(shè)計(jì)中,單片機(jī)發(fā)出的信號(hào)如何被紅外發(fā)射管識(shí)別,發(fā)射管能否正常發(fā)射紅外信號(hào)是發(fā)射電路要解決的關(guān)鍵問題。
要發(fā)射紅外信號(hào),必須要有紅外發(fā)射器件。紅外發(fā)光二極管是一種能產(chǎn)生紅外光的發(fā)光二極管,目前大量使用的紅外發(fā)光二極管發(fā)出的紅外線波長(zhǎng)為940nm 左右,外形與普通發(fā)光二極管相同,只是顏色不同。常見的紅外發(fā)射二極管有黑色,透明色,它與普通發(fā)光二極管的最大區(qū)別在于所發(fā)出的光為不可見光,而普通發(fā)光二極管發(fā)出的是各種顏色的可見光[5],通常,紅外發(fā)光二極管分為兩種結(jié)構(gòu)形式:一種是遙控發(fā)射型紅外發(fā)光二極管(即最常用的手持遙控器所用的紅外發(fā)射二極管);一種是近距離發(fā)射型紅外發(fā)光二極管,這種二極管把紅外光的發(fā)射與接收共集為一體。由于本設(shè)計(jì)實(shí)現(xiàn)的是家居遙控,因此采用第一種即可。
如圖4 所示為系統(tǒng)遙控發(fā)射原理圖,P1.0 口為按鍵輸入口;P2.0 口為紅外發(fā)射端口,用于輸出38kHz 載波編碼,脈沖經(jīng)9013(NPN)放大然后由紅外發(fā)射管輸出;第9 腳為單片機(jī)的復(fù)位腳,采用RC 手動(dòng)復(fù)位電路;18、19 腳接晶振。
圖4紅外發(fā)射電路圖
2.3 紅外接收電路模塊
1). 紅外接收器件介紹。
一般的紅外接收頭主要由集成電路外加阻容元件,紅外線接收管及濾波光片等組成,電路設(shè)計(jì)相對(duì)繁瑣,在實(shí)際應(yīng)用中不方便。而紅外遙控接收頭SM0038 集紅外接收管,前置放大解調(diào)等于一體,無外部電路,體積小,密封性好,靈敏度高,應(yīng)用簡(jiǎn)單,用小功率紅外發(fā)射管發(fā)射信號(hào)接收距離達(dá)35 米,并且價(jià)格低廉。它僅有三條管腳,分別是電源正極、電源負(fù)極以及信號(hào)輸出端,其工作電壓在5V 左右,接收頻率為38kHz,它的主要功能包括放大,選頻,解調(diào)幾大部分,要求輸入信號(hào)需是已經(jīng)被調(diào)制的信號(hào)。從而使電路達(dá)到最簡(jiǎn)化,靈敏度和抗干擾性都非常好,是一個(gè)接收紅外信號(hào)的理想裝置。如圖5 所示:
圖 5 SM0038
2). 接收電路及調(diào)光電路設(shè)計(jì)。
接收電路和調(diào)光電路的實(shí)現(xiàn)均是通過繼電器實(shí)現(xiàn)的,給每一個(gè)繼電器串聯(lián)一個(gè)電阻,構(gòu)成一個(gè)回路,本電路將四個(gè)繼電器回路并聯(lián),連接在P0 口上,當(dāng)四個(gè)繼電器均閉合時(shí),燈最亮,當(dāng)三個(gè)繼電器工作時(shí),燈較亮,當(dāng)兩個(gè)繼電器工作時(shí)燈次亮,當(dāng)一個(gè)繼電器工作時(shí),燈最暗,當(dāng)四個(gè)繼電器都不工作時(shí),燈泡處于關(guān)閉狀態(tài)。接收電路圖如圖6 所示:
圖 6 接收電路圖
3 系統(tǒng)軟件設(shè)計(jì)
本系統(tǒng)所用的紅外線接收器SM0038 的解調(diào)中心頻率為38KHz,故發(fā)射頻率也采用38kHz,本電路采用一路按鍵,一種編碼方式實(shí)現(xiàn)對(duì)家居燈的控制,接收端根據(jù)接收到的不同編碼個(gè)數(shù)實(shí)現(xiàn)燈的不同亮度的調(diào)節(jié)控制。每一次P1.0 口為低電平時(shí),則確定鍵被按下,由P2.0 口發(fā)射一個(gè)編碼。接收端接收編碼時(shí)進(jìn)行判斷,首個(gè)低電平是否大于2ms,如果是,再判斷是否是正確的編碼,如果是,num加1,亮度調(diào)暗一檔。
3.1、遙控發(fā)射程序控制流程圖
圖 7 發(fā)射程序流程圖
初始化程序后,開定時(shí)器產(chǎn)生38kHz 脈沖,再判斷有無按鍵按下,當(dāng)有按鍵按下時(shí),根據(jù)定時(shí)器設(shè)定的時(shí)間發(fā)一幀脈沖,首先發(fā)3ms 高電平,再發(fā)1ms 低電平,1ms 高電平,接著停發(fā)10ms。
3.2. 遙控接收程序控制流程圖
圖8 接收部分調(diào)光程序流程圖
接收端采用查詢方式接收,當(dāng)查詢到P1.0 口為低電平時(shí),累加器工作,通過累加器中變量個(gè)數(shù)判斷控制燈的亮度及開關(guān)。當(dāng)num為0 時(shí),燈最亮,加1則調(diào)暗一個(gè)檔次,當(dāng)num等于4 時(shí),繼電器全部斷開,燈滅。
4 結(jié)論
為了減少電路的繁瑣,我使用單片機(jī)來實(shí)現(xiàn)軟件編碼解碼,大大提高了電路的靈活性,降低了成本,僅僅使用一個(gè)鍵就能實(shí)現(xiàn)對(duì)一個(gè)燈具的開關(guān)和亮度調(diào)節(jié),若是把一個(gè)按鍵開關(guān)改設(shè)成一個(gè)矩陣鍵盤,就可以實(shí)現(xiàn)對(duì)整個(gè)家里的燈具的開關(guān)和亮度控制,實(shí)用性很強(qiáng)。
【推薦閱讀】
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索