采用離散FET設(shè)計(jì)的EMI抑制技術(shù)
發(fā)布時(shí)間:2021-04-09 責(zé)任編輯:wenwei
【導(dǎo)讀】本系列文章的第 1 部分至第 5 部分中,介紹了抑制傳導(dǎo)和輻射電磁干擾 (EMI) 的實(shí)用指南和示例,尤其是針對(duì)采用單片集成功率 MOSFET 的 DC/DC 轉(zhuǎn)換器解決方案進(jìn)行了詳細(xì)介紹。在此基礎(chǔ)上,本文繼續(xù)探討使用控制器驅(qū)動(dòng)分立式高、低側(cè)功率 MOSFET 對(duì)的 DC/DC 穩(wěn)壓器電路適用的 EMI 的抑制技術(shù)。使用控制器(例如圖 1 所示同步降壓穩(wěn)壓器電路中的控制器)的實(shí)現(xiàn)方案具有諸多優(yōu)點(diǎn),包括能夠增強(qiáng)電流性能,改善散熱性能,以及提高設(shè)計(jì)選擇、元器件選型和所實(shí)現(xiàn)功能的靈活性。
圖 1:驅(qū)動(dòng)功率 MOSFET Q1 和 Q2 的同步降壓控制器的原理圖
然而,從 EMI 角度來看,采用分立式 FET 的控制器解決方案與采用集成 FET 的轉(zhuǎn)換器相比,更具挑戰(zhàn)性。主要有兩方面的考量因素。首先,在緊湊性方面,采用 MOSFET 和控制器的功率級(jí)的印刷電路板 (PCB) 布局比不上采用優(yōu)化引腳布局和內(nèi)部柵極驅(qū)動(dòng)器的功率轉(zhuǎn)換器集成電路 (IC) 。其次,對(duì)于死區(qū)時(shí)間管理,在 MOSFET 開關(guān)時(shí)間在額定范圍的轉(zhuǎn)換器中通常更精確。因此,體二極管導(dǎo)通時(shí)間更短,從而能夠改善開關(guān)性能并降低與反向恢復(fù)相關(guān)的噪聲。
本文提供與采用 MOSFET 和控制器及半橋設(shè)計(jì)的多層 PCB 相關(guān)指南,以實(shí)現(xiàn)出色的 EMI 性能。當(dāng)務(wù)之急是謹(jǐn)慎選擇功率級(jí)元器件和適合的 PCB 布局,最大程度地減小關(guān)鍵回路寄生電感。布局示例表明,可以在不犧牲效率或熱性能指標(biāo)的情況下減少傳導(dǎo)電磁輻射。
迎接 EMI 相關(guān)挑戰(zhàn)
產(chǎn)生 EMI 的三個(gè)基本要素包括:電噪聲源、耦合路徑及受擾接收器。應(yīng)對(duì)其中一個(gè)或所有基本要素,可以實(shí)現(xiàn)干擾抑制,從而實(shí)現(xiàn)合電磁兼容性 (EMC)。在實(shí)踐中,可以采用多種技術(shù)中斷耦合路徑和/或強(qiáng)化可能的受擾電路,例如插入 EMI 濾波器來抑制傳導(dǎo)干擾,借助屏蔽來降低輻射干擾等。
對(duì)于與降壓穩(wěn)壓器的不連續(xù)輸入電流(或升壓穩(wěn)壓器的不連續(xù)輸出電流)相關(guān)的低頻 EMI 頻譜幅值,采用傳統(tǒng)的濾波器級(jí)進(jìn)行處理相對(duì)容易。然而,與開關(guān)換向期間電壓和電流的尖銳邊緣相關(guān)的高 dv/dt 以及 di/dt 會(huì)產(chǎn)生諧波分量,從而導(dǎo)致出現(xiàn)更大的問題。高電流柵極驅(qū)動(dòng)器(在電壓低于 100V 時(shí),通常集成在控制器中)可以以極高的速度開關(guān)功率 MOSFET。傳統(tǒng)硅 FET 的轉(zhuǎn)換率通常大于 10V/ns和 1A/ns,基于氮化鎵 (GaN) 的器件轉(zhuǎn)換率可能更高。我對(duì)本文第 2 部分中梯形開關(guān)波形的時(shí)域特性與其頻譜成分之間的關(guān)系進(jìn)行了研究,闡述了波形的最陡斜率決定高頻頻譜的漸近包絡(luò),因此,采用降低 dv/dt 和 di/dt 的方法有助于降低產(chǎn)生 EMI 的可能性。
除了電壓和電流的尖銳邊沿之外,與開關(guān)波形相關(guān)的過沖/下沖及隨后產(chǎn)生的振鈴也非常棘手。圖 2 顯示了硬開關(guān)同步降壓穩(wěn)壓器的開關(guān)節(jié)點(diǎn)電壓波形。開關(guān)節(jié)點(diǎn)電壓振鈴頻率范圍為 50MHz 至 250MHz,具體取決于寄生功率回路電感的諧振 (LLOOP)及 MOSFET 輸出電容 (COSS)。此類高頻分量可以通過近場(chǎng)耦合傳播到輸出總線、周邊元器件或輸入電源線,并且難以通過傳統(tǒng)濾波衰減。同步 MOSFET 體二極管反向恢復(fù)存在類似的負(fù)面作用,當(dāng)二極管恢復(fù)電流流入寄生回路電感時(shí),振鈴電壓升高。
圖 2:同步降壓穩(wěn)壓器在 MOSFET 導(dǎo)通和關(guān)斷轉(zhuǎn)換期間的開關(guān)節(jié)點(diǎn)電壓波形和等效電路
圖 3 的原理圖標(biāo)出了降壓調(diào)節(jié)器電路 [6] 的關(guān)鍵高頻功率回路,代表了具有高轉(zhuǎn)換率電流的電路元件。可以對(duì)升壓、反相降壓-升壓、單端初級(jí)側(cè)電感轉(zhuǎn)換器 (SEPIC) 和其他拓?fù)溥M(jìn)行類似檢查。最大限度縮減功率回路的面積至關(guān)重要,原因是該參數(shù)與寄生電感和相關(guān) H 場(chǎng)傳播成正比。主要設(shè)計(jì)目標(biāo)是通過減小寄生電感最大程度提升寄生 LC 諧振電路的諧振頻率。由此,降低存儲(chǔ)的無功能量總值,減少開關(guān)節(jié)點(diǎn)電壓峰值過沖和振鈴。此外,達(dá)到臨界阻尼因子的等效電阻實(shí)際上更低,因此任何振鈴都會(huì)更早衰減 - 在高頻時(shí)的趨膚效應(yīng)增大回路的寄生電阻時(shí)更是如此。
圖 3:標(biāo)出了同步降壓穩(wěn)壓器中對(duì) EMI 至關(guān)重要的高頻電流回路
圖 3 中,還顯示了導(dǎo)通和關(guān)斷期間高側(cè)和低側(cè) MOSFET 的柵極驅(qū)動(dòng)器回路。務(wù)必遵從功率級(jí)布局期間的特殊注意事項(xiàng)(下文討論),確保功率回路、柵極回路和共源寄生電感都盡可能低。
實(shí)現(xiàn)低 EMI 的 PCB 布局設(shè)計(jì)
以下步驟總結(jié)了 DC/DC 穩(wěn)壓器中元器件位置和 PCB 布局的基本準(zhǔn)則,以幫助盡可能降低噪聲和 EMI 信號(hào)。其中一些步驟類似于第 5 部分中針對(duì)采用集成 MOSFET 的基于轉(zhuǎn)換器的設(shè)計(jì)所介紹的步驟。在后續(xù)部分,我將提供 PCB 布局案例研究,探討如何優(yōu)化降壓穩(wěn)壓器 EMI 特性。
● 布線及元器件排布
● 將所有功率級(jí)元器件排布在 PCB 頂部。
— 避免將開關(guān)節(jié)點(diǎn)覆銅和電感放在底部,以免對(duì) EMI 測(cè)試裝置的基準(zhǔn)平面產(chǎn)生輻射。
● 將 VCC 或 BIAS 的旁路電容放置于靠近各自引腳的位置。
— 在將 AGND 引腳與 GND 相連之前,首先電路中連入 CVCC 和 CBIAS 電容。
● 將臨近的自舉電容與控制器的 BOOT 和 SW 引腳相連接。
— 利用鄰近的接地覆銅屏蔽 CBST 電容和開關(guān)節(jié)點(diǎn),降低共模噪聲。
● GND 平面設(shè)計(jì)
● 將 PCB 分層板中的第 2 層接地平面盡可能放在靠近頂層功率級(jí)元器件的位置,以消除 H 場(chǎng)、降低寄生電感及屏蔽噪聲。
● 使用位于頂層與第二層接地平面之間的低 z 軸間距獲得最佳映像平面效果。
— 在 PCB 分層規(guī)范中將層間距指定為 6 mil。
● 輸入和輸出電容
● 放置降壓穩(wěn)壓器的 CIN,盡量減小將 CIN 連接到功率 MOSFET 所形成的回路面積。對(duì)于升壓穩(wěn)壓器和 SEPIC 穩(wěn)壓器的 COUT,同樣建議如此操作。
— 功率回路分類為橫向或縱向,具體取決于電容相對(duì)于 MOSFET 的放置位置。
● CIN 和 COUT 的接地返回路徑應(yīng)由集中放置的頂層平面組成。
— 使用多個(gè)外部或內(nèi)部 GND 平面連接 DC 電流路徑。
● 使用外殼尺寸為 0402 或 0603 的低等效串聯(lián)電感 (ESL) 陶瓷電容,并放在 MOSFET 附近,以最大限度地減小功率回路寄生電感。
● 電感和開關(guān)節(jié)點(diǎn)布局
● 將電感放置在靠近 MOSFET 的位置。
— 盡量減小開關(guān)節(jié)點(diǎn)覆銅多邊形面積,從而盡量避免電容耦合及減小共模電流。覆銅區(qū)應(yīng)僅覆蓋電感焊盤并僅占用連接 MOSFET 端子所需的最小面積。
● 使用鄰近的接地保護(hù)并通過屏蔽限制開關(guān)節(jié)點(diǎn)噪聲。
● 檢查電感點(diǎn)位置,確保與開關(guān)節(jié)點(diǎn)相連的繞組末端位于繞組幾何結(jié)構(gòu)內(nèi)部的底部,由連接到 VOUT(降壓穩(wěn)壓器)或 VIN(升壓穩(wěn)壓器)的繞組的外層繞線提供屏蔽。
● 選擇在封裝下方設(shè)有端子的電感。
— 避免使用可能產(chǎn)生天線輻射效應(yīng)的大型側(cè)壁式端子。
● 盡可能使用電場(chǎng)屏蔽電感。將屏蔽端子與 PCB 接地平面相連。
● 柵極驅(qū)動(dòng)器布線
● 將控制器放置在盡可能靠近功率 MOSFET 的位置。
— 連接 HO 和 SW 的柵極驅(qū)動(dòng)器時(shí),應(yīng)分別采用最小的布線長度和最小的回路面積,直接連接到高側(cè) MOSFET 柵極和源極端子。
— 將 LO 的柵極驅(qū)動(dòng)器直接連接到接地平面上方的低側(cè) MOSFET 柵極,并盡量減小介電間距。
— 對(duì)柵極驅(qū)動(dòng)器進(jìn)行正交布線,盡量減少功率回路與柵極回路之間的耦合。
● EMI 管理
● 連接 EMI 濾波器元器件時(shí),應(yīng)避免由電感和開關(guān)節(jié)點(diǎn)輻射產(chǎn)生的電場(chǎng)形成耦合。
— 如果 EMI 濾波器與功率級(jí)的分隔距離不足,可將 EMI 濾波器放在電路板上轉(zhuǎn)換器的對(duì)側(cè)。
● 在 EMI 濾波器下方的所有層上開口,以防寄生耦合路徑影響濾波器的衰減特性。
● 根據(jù)需要,可添加一個(gè)與 CBOOT 串聯(lián)的電阻(最好小于 10Ω),限制 MOSFET 導(dǎo)通速度,從而降低開關(guān)節(jié)點(diǎn)電壓轉(zhuǎn)換率,減少過沖和振鈴。
— 自舉電阻會(huì)改變驅(qū)動(dòng)電流瞬變率,從而降低 MOSFET 導(dǎo)通期間的開關(guān)節(jié)點(diǎn)電壓和電流轉(zhuǎn)換率。
— 為提高靈活性,可以考慮使用具有柵極驅(qū)動(dòng)器專用源極引腳和漏極引腳的控制器。
● 任何所需的開關(guān)節(jié)點(diǎn)緩沖電路都應(yīng)根據(jù)每次開關(guān)轉(zhuǎn)換時(shí)的瞬態(tài)電流峰值,占用最小的回路面積。
— 將封裝尺寸最小的元器件連接到 SW(通常是電容),盡量降低其天線效應(yīng)。
● 使用具有內(nèi)部接地平面的多層 PCB,與雙層設(shè)計(jì)相比,其性能得到顯著提升。
— 避免阻斷 MOSFET 附近的高頻電流路徑。
● 考慮采用金屬外殼屏蔽優(yōu)化輻射 EMI 性能。
— 屏蔽外殼可覆蓋除 EMI 濾波器之外的所有功率級(jí)元器件,外殼與 PCB 上的 GND 相連,基本形成了一個(gè)帶有 PCB 接地平面的法拉第籠。
DC/DC 同步降壓控制器案例研究
圖 4 顯示用于汽車應(yīng)用或噪聲敏感型工業(yè)應(yīng)用的同步降壓轉(zhuǎn)換器電路 [6] 的原理圖。其中融合了有助于改善 EMI 性能的多項(xiàng)特性,包括恒定開關(guān)頻率操作、外部時(shí)鐘同步以及通過高側(cè) MOSFET 受控導(dǎo)通實(shí)現(xiàn)的開關(guān)節(jié)點(diǎn)整形(轉(zhuǎn)換率控制)。為了幫助實(shí)現(xiàn)最佳的 PCB 布局,原理圖中將高電流走線(VIN、PGND、SW 連接)、噪聲敏感型網(wǎng)絡(luò)(FB、COMP、ILIM)和高 dv/dt 電路節(jié)點(diǎn)(SW、BST、HO、LO、SYNC)突出顯示。高 di/dt 回路類似于圖 3 中標(biāo)示的回路。
圖 4:DC/DC 降壓穩(wěn)壓器原理圖,其中標(biāo)示出 PCB 布局的重要節(jié)點(diǎn)和走線
圖 5 顯示了功率 MOSFET 及輸入電容的兩種橫向回路布局。功率級(jí)位于 PCB 頂層,控制器放置于底部。橫向回路設(shè)計(jì)在頂層存在循環(huán)電流(圖 5 中用白框表示),該電流在第二層接地平面上感應(yīng)出映像電流,以抵消磁通,從而降低寄生回路電感。
更具體來說,修改圖 5b 中的布局,使高側(cè) FET (Q1) 旋轉(zhuǎn) 90 度。這樣可以改善 Q1 的散熱效果,從而更好地進(jìn)行熱管理,并可以在 MOSFET 附近方便地放置外殼尺寸為 0603 的低 ESL 電容 (Cin1),以實(shí)現(xiàn)高頻去耦??紤]到功率級(jí)元器件的 U 型布局方向,較短返回連接的輸出電容將放置在低側(cè) MOSFET。
圖 5:兩種傳統(tǒng)的橫向回路布局設(shè)計(jì)
改進(jìn)后的 PCB 布局設(shè)計(jì)
圖 6 所示為改進(jìn)后的布局,其優(yōu)勢(shì)是可減小功率回路面積,使多層結(jié)構(gòu)達(dá)到高效率。該設(shè)計(jì)將 PCB 的第 2 層用作功率回路返回路徑。該返回路徑位于頂層的緊下方,形成小尺寸物理回路。垂直回路中的反向電流可使磁場(chǎng)自行消除,從而進(jìn)一步減小寄生電感。圖 6 中的側(cè)視圖展示了在多層 PCB 結(jié)構(gòu)中形成小尺寸自行消除回路的概念。
將四個(gè) 0603 輸入電容放置在盡可能接近高側(cè) MOSFET 的位置(位于圖 6 中大容量輸入去耦電容 CIN1 與 CIN2 之間),這四個(gè)電容具有較小的 0402 或 0603 外殼尺寸及較低的 ESL。這些電容的返回連接通過多個(gè) 12 mil 的過孔連接到第 2 層接地平面。第 2 層接地平面在 MOSFET 的緊下方提供了至低側(cè) MOSFET 源極端子的電流返回路徑。
圖 6:采用垂直功率回路設(shè)計(jì)的功率級(jí)和控制器的布局
此外,開關(guān)節(jié)點(diǎn)覆銅多邊形區(qū)域只包含電感焊盤以及連接 MOSFET 所需的最小面積。接地平面覆銅區(qū)可屏蔽將 MOSFET 連接到電感端子的多邊形覆銅區(qū)。SW 和 BST 的單層布局意味著 PCB 的底側(cè)不會(huì)有 dv/dt 較高的過孔。這樣可以避免在 EMI 測(cè)試期間,電場(chǎng)與基準(zhǔn)接地平面耦合。最后,在電感兩側(cè)各使用一個(gè)陶瓷輸出電容 COUT1 和 COUT2,優(yōu)化輸出電流回路。在輸出端引出兩個(gè)并聯(lián)的返回路徑可以將返回電流分成兩部分,有助于減弱“地彈反射”效應(yīng)。
圖 7a 所示為,圖 4 中的穩(wěn)壓器采用圖 6 中的優(yōu)化布局時(shí),使用寬帶探頭測(cè)得的開關(guān)節(jié)點(diǎn)電壓波形。振鈴不明顯,只存在低幅度過沖和下沖,表示 50MHz 以上時(shí) EMI 性能良好。為進(jìn)行對(duì)比,圖 7b 顯示了采用圖 5b 所示橫向回路布局的類似測(cè)量結(jié)果。優(yōu)化布局的峰值過沖降低約 8V。
圖 7:VIN = 48V,IOUT = 8A 時(shí)的開關(guān)節(jié)點(diǎn)電壓波形,(a) 為優(yōu)化布局,(b) 為橫向回路布局
圖 8 所示為圖 6 中的轉(zhuǎn)換器在 150kHz 至 108MHz 下測(cè)得的傳導(dǎo)發(fā)射。使用 Rohde & Schwarz 的頻譜分析儀,所得檢測(cè)器掃描結(jié)果的峰值和平均值分別以黃色和藍(lán)色表示。結(jié)果符合國際無線電干擾特別委員會(huì) (CISPR) 25 5 類要求。紅色限值圖象為 5 類峰值和平均值限值(峰值限值通常比平均值限值高出 20dB)。
圖 8:CISPR 25 傳導(dǎo)發(fā)射測(cè)量結(jié)果,(a) 頻率范圍為 150kHz 至 30MHz,(b) 頻率范圍為 30MHz 至 108MHz
總結(jié)
功率半導(dǎo)體器件的開關(guān)瞬變是傳導(dǎo) EMI 和輻射 EMI 的主要來源。本文重點(diǎn)介紹在使用控制器和外部 MOSFET 的 DC/DC 穩(wěn)壓器電路中,有助于降低 EMI 的 PCB 布局。關(guān)于布局的主要建議包括,盡量減小布局中的電流“熱回路”面積,避免阻斷電流路徑,采用具有內(nèi)部接地平面的多層 PCB 結(jié)構(gòu)實(shí)現(xiàn)屏蔽(性能遠(yuǎn)超雙層 PCB),以差分對(duì)形式敷設(shè)短而直接的柵極驅(qū)動(dòng)器走線,以及通過盡量減小開關(guān)節(jié)點(diǎn)覆銅區(qū)域面積來降低電場(chǎng)輻射耦合。
優(yōu)化后的 PCB 布局有助于改善穩(wěn)壓器的 EMI 信號(hào)(與降低 EMI 的其他常用“修復(fù)”手段不同,不會(huì)犧牲效率或熱性能)。盡管本文圍繞 EMI 敏感的同步降壓功率級(jí)進(jìn)行論述,但只要能確定關(guān)鍵回路并實(shí)施文中建議采用的布局方法,通??梢詫⑦@些概念推廣至任何 DC/DC 穩(wěn)壓器。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器