如何利用SiC高效驅(qū)動電動車?
發(fā)布時(shí)間:2021-03-04 責(zé)任編輯:lina
【導(dǎo)讀】電動汽車正在推動今天的能量轉(zhuǎn)換技術(shù)的極限,而大功率SiC FET的出現(xiàn)推動了這一技術(shù)。SiC FET有許多優(yōu)點(diǎn):允許更高的開關(guān)速度和更高的電壓,從而產(chǎn)生更小的磁性、更輕的電纜和更高的效率。這些改進(jìn)使電動汽車行駛里程更長,性能更強(qiáng)。
摘要:反激變換器/隔離柵-驅(qū)動器組合降低了在電動汽車系統(tǒng)中實(shí)現(xiàn)SiC FET設(shè)計(jì)的成本和復(fù)雜性。
電動汽車正在推動今天的能量轉(zhuǎn)換技術(shù)的極限,而大功率SiC FET的出現(xiàn)推動了這一技術(shù)。SiC FET有許多優(yōu)點(diǎn):允許更高的開關(guān)速度和更高的電壓,從而產(chǎn)生更小的磁性、更輕的電纜和更高的效率。這些改進(jìn)使電動汽車行駛里程更長,性能更強(qiáng)。
SiC FET的設(shè)計(jì)需要新的柵驅(qū)動技術(shù)。一個要求是,它們包括負(fù)柵極電壓,以確保SiC FET保持完全關(guān)閉。產(chǎn)生這些負(fù)電壓需要使用隔離電源。因此,SiC柵極驅(qū)動器的設(shè)計(jì)似乎是一項(xiàng)艱巨的任務(wù)。然而,回顧半橋原理和反激變換器技術(shù)可以迅速地揭開設(shè)計(jì)中必要步驟的神秘面紗。
半橋結(jié)構(gòu)SiC場效應(yīng)晶體管。半橋允許中心節(jié)點(diǎn)(藍(lán)色圓圈所示)被有效地拉到正軌或負(fù)軌上。在電動汽車中,這些軌道通常是dc link軌道,使用最新的SiC FET技術(shù)可以達(dá)到800甚至1000 V。
車載充電器(OBC)、主DC-DC變換器、牽引逆變器以及許多其他電動汽車系統(tǒng)的核心是兩個開關(guān)設(shè)備。它們通常在示意圖中被描述為一個堆疊在另一個上面,形成一個半橋。半橋可以有效地將兩個開關(guān)設(shè)備之間的中心節(jié)點(diǎn)拉到正極或負(fù)極軌道上。在電動汽車中,這些軌道通常是直流鏈路軌道,使用最新的SiC FET技術(shù)可以達(dá)到800甚至1000 V。然而,在半橋結(jié)構(gòu)中疊加FET需要特別注意柵極驅(qū)動器接地基準(zhǔn)。
要打開場效應(yīng)晶體管,必須將柵源電壓VGS提高到一定的水平,對于SiC場效應(yīng)晶體管,通常是~ 15v。柵極驅(qū)動器通常將柵極電壓拉至VDD軌來打開FET。門驅(qū)動器使用相同的電源線,高側(cè)門驅(qū)動器的接地被連接到負(fù)軌(直流鏈路-),高側(cè)門驅(qū)動器的輸出被引用到直流鏈路-。這種接地方式會產(chǎn)生許多問題,而且根本不起作用。
例如,如果低側(cè)場效應(yīng)晶體管是關(guān)閉狀態(tài),高側(cè)場效應(yīng)晶體管的源相對于高側(cè)柵極驅(qū)動器浮動,VGS(柵極電壓)是未知的。
解決方案是:兩個柵極驅(qū)動器使用單獨(dú)的電源,并且高側(cè)柵極驅(qū)動器接地連接到高側(cè)FET的源極。在這種配置中,高側(cè)柵極驅(qū)動器引用FET源連接;因此,即使FET源上升到直流link+,柵源電壓仍然是相同的。
解決了高電平柵極驅(qū)動的問題后,下一步就是為柵極驅(qū)動產(chǎn)生電源和負(fù)柵極電壓。正確的連接使用獨(dú)立的電源,高側(cè)門驅(qū)動器接地與高側(cè)場效應(yīng)晶體管的電源相連。
門驅(qū)動連接錯誤(左)和正確(右)。如果柵極驅(qū)動器使用相同的功率軌,并且高側(cè)柵極驅(qū)動器接地連接到負(fù)軌(直流鏈路-),高側(cè)柵極驅(qū)動器的輸出參考直流鏈路。這造成了許多問題,而且根本不起作用。
為半橋柵驅(qū)動電路設(shè)計(jì)電源的過程常常是一項(xiàng)艱巨的任務(wù),涉及到DC-DC控制器、變壓器和PCB區(qū)域限制。SiC FET的負(fù)柵電壓讓電源設(shè)計(jì)變得更復(fù)雜化。最后,大多數(shù)電動汽車系統(tǒng)連接到高壓直流鏈路,并要求低壓控制部分與高壓功率轉(zhuǎn)換階段隔離。然而,通過一些升級,反激變換器可以修改以滿足所有這些要求。
如今,大多數(shù)電動汽車都有一個主DC-DC變換器,將直流鏈路電壓逐步降低到大多數(shù)低功率電子系統(tǒng)使用的低電壓軌道(通常是12和48 V)。通過一個隔離反激變換器,其中一個低壓軌可以用來為隔離柵驅(qū)動器供電。在典型的配置中,反激變換器的變壓器提供隔離,并有兩個單獨(dú)的二次側(cè)繞組,為兩個柵門驅(qū)動器創(chuàng)建兩個電源。因?yàn)閮蓚€輸出是由變壓器耦合的,所以DC-DC控制器僅直接調(diào)節(jié)兩個輸出中的一個。
另一個輸出通過變壓器的交錯耦合間接調(diào)節(jié)。這種配置導(dǎo)致間接調(diào)節(jié)輸出的性能略低于直接調(diào)節(jié)輸出,但不足以影響整個系統(tǒng)。使用一個變壓器和轉(zhuǎn)換器的兩個輸出減少了電路板的空間和成本。通過利用這種結(jié)構(gòu),可以進(jìn)一步修改變壓器,以產(chǎn)生SiC FET所需的負(fù)柵電壓。
帶雙輸出反激變換器的半橋電路,為隔離的柵極驅(qū)動器供電。在這里,12v軌為隔離柵極驅(qū)動器的主側(cè)和副側(cè)供電。反激變換器的變壓器提供了隔離,并有兩個分開的二次側(cè)繞組,以創(chuàng)建兩個供應(yīng)的兩個門驅(qū)動器。因?yàn)閮蓚€輸出是由變壓器耦合的,所以DC-DC控制器只直接調(diào)節(jié)兩個輸出中的一個。另一個輸出通過變壓器的交錯耦合間接調(diào)節(jié)。
現(xiàn)在考慮一個改進(jìn)后的反激變壓器,在兩個輸出繞組的中間各有一個接頭(在示意圖中表示為VMIDA和VMIDB)。在高側(cè)柵驅(qū)動電源域中,中間接頭相對于一端接頭產(chǎn)生正電壓(原理圖中為VGNDA),相對于另一端(VDDA)產(chǎn)生負(fù)電壓。高側(cè)場效應(yīng)晶體管的源被連接到中間接頭 (VMIDA),而柵極驅(qū)動程序仍然參考低接頭(VGNDA)。當(dāng)柵驅(qū)動關(guān)閉場效應(yīng)管時(shí),它將場效應(yīng)管柵拉向地面。這導(dǎo)致FET門極電壓(VGNDA)低于源極電壓(VMIDA)。該連接產(chǎn)生一個負(fù)的柵極電壓,以確保SiC FET保持在關(guān)斷狀態(tài)。
在兩個輸出繞組上改裝了VMIDA和VMIDB接頭的反激變壓器。在用藍(lán)色突出顯示的高側(cè)柵極驅(qū)動電源域中,VMIDA相對于VGNDA產(chǎn)生一個正電壓,相對于VDDA產(chǎn)生一個負(fù)電壓。高側(cè)場效應(yīng)晶體管的源被綁定到VMIDA,而柵極驅(qū)動程序仍然引用VGNDA。
要注意的是:當(dāng)柵極驅(qū)動打開高側(cè)SiC FET,并將場效應(yīng)晶體管柵極拉到高側(cè)分接電壓(VDDA)時(shí),這種配置也會改變柵極電壓。通過調(diào)整變壓器中接頭與高、低接頭的匝數(shù)比(VDDA / VMIDA、VMIDA / VGNDA)來設(shè)置電壓(VMIDA)。同樣,這個操作也適用于低側(cè)柵驅(qū)動電源域。
許多隔離柵極驅(qū)動器件,如Silicon Labs的Si828x,包括一個專用的VMID引腳,用于檢測SiC FET的漏源極電壓,以進(jìn)行去飽和檢測。為了進(jìn)一步降低成本和電路板空間,許多隔離柵極驅(qū)動器包括一個內(nèi)置的DC-DC控制器。Silicon Labs的Si828x也有這個功能。集成的DC-DC控制器消除了一個單獨(dú)的控制器IC的需要,并且常常使光耦反饋閑的不那么重要,因?yàn)楦綦x柵極驅(qū)動器通過內(nèi)部的隔離屏障傳遞反饋。因此,通過使用帶有復(fù)雜變壓器設(shè)計(jì)的反激變換器,單個DC-DC變換器可以為隔離的柵極驅(qū)動器供電,并產(chǎn)生負(fù)的柵極電壓。
一個復(fù)雜的反激變換器加上最新的隔離柵驅(qū)動器,簡化了驅(qū)動半橋結(jié)構(gòu)SiC FET。它還降低了在許多電動汽車系統(tǒng)中使用半橋式SiC FET設(shè)計(jì)的成本和復(fù)雜性。由于從車載充電器到牽引逆變器的系統(tǒng)都采用了SiC FET,電動汽車獲得了更高的效率,可以在更高的電壓下工作,并使用更輕的部件,從而讓電動車的動力能夠與燃油車媲美。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動控制解決方案 驅(qū)動智能運(yùn)動新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖