你的位置:首頁 > 電源管理 > 正文

多路輸出單端反激式開關電源原理及設計

發(fā)布時間:2010-03-29 來源:電子元件技術網(wǎng)

本文介紹了一種基于TOPSwith系列芯片設計的小功率多路輸出AC/DC開關電源的原理及設計方法。

設計要求

本文設計的開關電源將作為智能儀表的電源,最大功率為10 W。為了減少PCB的數(shù)量和智能儀表的體積,要求電源尺寸盡量小并能將電源部分與儀表主控部分做在同一個PCB上。

考慮10W的功率以及小體積的因素,電路選用單端反激電路。單端反激電路的特點是:電路簡單、體積小巧且成本低。單端反激電路由輸入濾波電路、脈寬調(diào)制電路、功率傳遞電路(由開關管和變壓器組成)、輸出整流濾波電路、誤差檢測電路(由芯片TL431及周圍元件組成)及信號傳遞電路(由隔離光耦及電阻組成)等組成。本電源設計成表面貼裝的模塊電源,其具體參數(shù)要求如下:

  •  輸出最大功率:10W
  •  輸入交流電壓:85~265V
  •  輸出直流電壓/電流:+5V,500mA;+12V,150mA;+24V,100mA
  •  紋波電壓:≤120mV

單端反激式開關電源的控制原理

所謂單端是指TOPSwitch-II系列器件只有一個脈沖調(diào)制信號功率輸出端一漏極D。反激式則指當功率MOSFET導通時,就將電能儲存在高頻變壓器的初級繞組上,僅當MOSFET關斷時,才向次級輸送電能,由于開關頻率高達100kHz,使得高頻變壓器能夠快速存儲、釋放能量,經(jīng)高頻整流濾波后即可獲得直流連續(xù)輸出。這也是反激式電路的基本工作原理。而反饋回路通過控制TOPSwitch器件控制端的電流來調(diào)節(jié)占空比,以達到穩(wěn)壓的目的。


TOPSwitch-Ⅱ系列芯片選型及介紹

TOPSwitch-Ⅱ系列芯片的漏極(D)與內(nèi)部功率開關器件MOSFET相連,外部通過負載電感與主電源相連,在啟動狀態(tài)下通過內(nèi)部開關式高壓電源提供內(nèi)部偏置電流,并設有電流檢測??刂茦O(C)用于占空比控制的誤差放大器和反饋電流的輸入引腳,與內(nèi)部并聯(lián)穩(wěn)壓器連接,提供正常工作時的內(nèi)部偏置電流,同時也是提供旁路、自動重起和補償功能的電容連接點。源極(S)與高壓功率回路的MOSFET的源極相連,兼做初級電路的公共點與參考點。內(nèi)部輸出極MOSFET的占空比隨控制引腳電流的增加而線性下降,控制電壓的典型值為5.7 V,極限電壓為9 V,控制端最大允許電流為100 mA。

在設計時還對閾值電壓采取了溫度補償措施,以消除因漏源導通電阻隨溫度變化而引起的漏極電流變化。當芯片結溫大于135℃時,過熱保護電路就輸出高電平,關斷輸出極。此時控制電壓Vc進入滯后調(diào)節(jié)模式,Vc端波形也變成幅度為4.7V~5.7V的鋸齒波.若要重新啟動電路,需斷電后再接通電路開關,或者將Vc降至3.3V以下,再利用上電復位電路將內(nèi)部觸發(fā)器置零,使MOSFET恢復正常工作。

采用TOPSwitch-Ⅱ系列設計單片開關電源時所需外接元器件少,而且器件對電路板布局以及輸入總線瞬變的敏感性大大減少,故設計十分方便,性能穩(wěn)定,性價比更高。

對于芯片的選擇主要考慮輸入電壓和功率。由設計要求可知,輸入電壓為寬范圍輸入,輸出功率不大于10W,故選擇TOP222G。

電路設計

本開關電源的原理圖如圖1所示。

開關電源的原理圖

電源主電路為反激式,C1、L1、C2,接在交流電源進線端,用于濾除電網(wǎng)干擾,C5接在高壓和地之間,用于濾除高頻變壓器初、次級后和電容產(chǎn)生的共模干擾,在國際標準中被稱為"Y電容"。C1跟C5都稱作安全電容,但C1專門濾除電網(wǎng)線之間的串模干擾,被稱為"X電容"。

為承受可能從電網(wǎng)線竄入的電擊,可在交流端并聯(lián)一個標稱電壓u1mA為275V的壓敏電阻VSR。

鑒于在功率MOSFET關斷的瞬間,高頻變壓器的漏感產(chǎn)生尖峰電壓UL,另外,在原邊上會產(chǎn)生感應反向電動勢UOR,二者疊加在直流輸入電壓上。典型的情況下,交流輸入電壓經(jīng)整流橋整流后,其最高電壓UImax=380V,UL≈165V,UOR=135V,貝UOR+UL+UOR≈680V。這就要求功率MOSFET至少能承受700V的高壓,同時還必須在漏極增加鉗位電路,用以吸收尖峰電壓,保護TOP222G中的功率MOSFET。本電源的鉗位電路由D2、D3組成。其中D2為瞬態(tài)電壓抑制器(TVS)P6KE200,D3為超快恢復二極管UF4005。當MOSFET導通時,原邊電壓上端為正,下端為負,使得D3截止,鉗位電路不起作用。在MOSFET截止瞬間,原邊電壓變?yōu)橄露藶檎隙藶樨?,此時D1導通,電壓被限制在200V左右。

輸出環(huán)節(jié)設計

以+5V輸出環(huán)節(jié)為例,次級線圈上的高頻電壓經(jīng)過UF5401型100V/3A的超快恢復二極管D7,由于+5V輸出功率相對較大,于是增加了后級LC濾波器,以減少輸出紋波電壓。濾波電感L2選用被稱作"磁珠"的3.3μH穿心電感,可濾除D7在反向恢復過程中產(chǎn)生的開關噪聲。

 

對于其他兩路輸出,只需在輸出端分別加上濾波電容。其中R3、R4分別為輸出的假負載,它們能降低各自輸出端的空載和輕載電壓。

反饋環(huán)節(jié)設計

反饋同路主要由PC817和TL431及若干電容、電阻構成。其中U2為TL431,它為可調(diào)試精密并聯(lián)穩(wěn)壓器,利用電阻R5、R6分壓獲得基準電壓值。通過調(diào)節(jié)R5、R6的值可以調(diào)節(jié)輸出電壓的穩(wěn)壓值。C8為TL431的頻率補償電容,可以提高TL43l的瞬態(tài)頻率響應。C7為軟啟動電容,取C7=22μF時可增加4ms的軟啟動時間,在加上TOP222G本身已有的10ms軟啟動時間,則總共為14ms。

U3為PC817型線性光耦合器,其電流傳輸比(CTR)范圍為80%~160%,,能夠較好地滿足反饋回路的設計要求,而目前國內(nèi)常用的4N25、4N26屬于非線性光耦合器,不宜采用。反饋繞組上產(chǎn)生的電壓經(jīng)D4、C9整流濾波,獲得非隔離式+12V輸出,為PC817接收管的集電極供電。由于反饋繞組輸出電流較小,次級采用D4硅高速開關管1N4148。光耦PC817能將+5V輸出與電網(wǎng)隔離,其發(fā)射極電流送至TOP222G的控制端,用來調(diào)節(jié)占空比。

C3為控制端旁路電容,它能對控制回路進行補償并設定自動重啟頻率。當C3=47μF時,自動重啟頻率為1.2Hz,即每隔0.83s檢測一次調(diào)節(jié)失控故障是否已經(jīng)被排除,若確認已被排除,就自動重啟開關電源恢復正常工作。

R2為PC817中LED的外部限流電阻。實際上除了限流保護作用外,他對控制回路的增益也具有重要影響。當R2改變時,會依次影響到下列參數(shù)值:IF→IC→D→UO,也就相當于改變了控制回路的電流放大倍數(shù)。

下面簡要分析一下反饋回路實現(xiàn)穩(wěn)壓的工作原理。當輸出電壓UO發(fā)生波動且變化量為UO時,通過取樣電阻R5、R6分壓后,就使TL431的輸出電壓UK也產(chǎn)生相應的變化,進而使PC817中LED的工作電流IF改變,最后通過控制端電流IC的變化量來調(diào)節(jié)占空比D,使UO產(chǎn)生相反的變化,從而抵消UO的波動。上述穩(wěn)壓過程可歸納為:

UO ↑→UK ↓→IF ↑→IC ↑→D ↓→UO↓→最終使UO不變。

其余各路輸出未加反饋,輸出電壓均由高頻變壓器的匝數(shù)來確定。

要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉