【導(dǎo)讀】如何確切知曉處于如此低的溫度?精確可靠的低溫測(cè)量是一個(gè)非常奇異的領(lǐng)域,原因如下:首先,雖然物理定律仍然有效,但材料會(huì)發(fā)生重大轉(zhuǎn)變,其特征和行為也會(huì)發(fā)生根本變化。
大多數(shù)一般應(yīng)用的溫度測(cè)量在相當(dāng)有限的范圍內(nèi)進(jìn)行,介于水的冰點(diǎn)和沸點(diǎn)(0 °C 至 100 °C)之間,但還有許多情況超出了這兩個(gè)溫度水平。幸運(yùn)的是,市面上提供有額定溫度范圍為 -50 °C 至 +125 °C 的低成本、易使用的固態(tài)傳感器,還有一些特殊傳感器支持更廣的溫度范圍。此外,熱電偶、電阻溫度檢測(cè)器 (RTD) 和熱敏電阻可以處理更寬的溫度范圍。
例如,Vishay Components 的PTCSL03T091DT1E 熱敏電阻的額定溫度范圍為-40 °C (277 K)至+165 °C (438 K),而TE Connectivity Measurement Specialties 的R-10318-69 T 型熱電偶 支持-200 °C (73 K) 至+350 °C (623 K) 的更寬范圍。通常,針對(duì)這些測(cè)量的傳感器不難找到,挑戰(zhàn)在于傳感器的實(shí)際應(yīng)用。
當(dāng)溫度極高,甚至達(dá)到數(shù)千度時(shí),傳感器的選擇較為有限,通常只能在不同類型的熱電偶或紅外傳感裝置之間進(jìn)行選擇。由于被測(cè)源處于高溫,因此傳感器需要捕獲大量能量,同時(shí)對(duì)被測(cè)源的影響最小。
但是,如何測(cè)量那些相當(dāng)?shù)偷臏囟?,例如低至兩位?shù)(幾十K)、個(gè)位數(shù)(1到9 K)、甚至個(gè)位數(shù)以下 (<1 K) 區(qū)間的溫度?有些研究甚至低至0.01 K,《IEEE綜覽》最近的一篇文章《量子計(jì)算:原子鐘產(chǎn)生更持久的量子位》(Quantum Computing: Atomic Clocks Makefor Longer-Lasting Qubits) 討論了100 nK以下的研究工作。(如何實(shí)現(xiàn)如此低的溫度是另一個(gè)引人入勝的故事?。?/div>
然而,如何確切知曉處于如此低的溫度?精確可靠的低溫測(cè)量是一個(gè)非常奇異的領(lǐng)域,原因如下:
首先,雖然物理定律仍然有效,但材料會(huì)發(fā)生重大轉(zhuǎn)變,其特征和行為也會(huì)發(fā)生根本變化。在低K區(qū),傳感器性能、線性度和其他關(guān)鍵特性會(huì)有顯著變化。我們對(duì)水變成冰或蒸汽的原理了然于胸,但對(duì)低K區(qū)的變化卻難以掌握。
其次,測(cè)量方法通常與用于達(dá)到這些溫度的方法密切相關(guān)。例如,數(shù)T磁場(chǎng)(multi-Tesla magnetic fields)常常是過冷裝置的重要部分(相關(guān)方法和原因是另一個(gè)話題),而這些磁場(chǎng)會(huì)對(duì)傳感裝置及其元件產(chǎn)生重大影響。
第三,深冷項(xiàng)目常常涉及極少量的質(zhì)量,某些情況下可能僅為幾個(gè)原子或分子。所以,我們面臨雙重難題:能量低且數(shù)量少的分子。顯然,無法連接傳感器,即使可以,傳感器也會(huì)嚴(yán)重影響被測(cè)物質(zhì)。在很多方面,這是量子物理學(xué)的海森堡不確定性原理的必然結(jié)果,即測(cè)量操作會(huì)影響被測(cè)對(duì)象。
然而,科學(xué)家和研究人員仍然需要進(jìn)行這種測(cè)量。他們有多種選擇,取決于溫度低到什么程度和測(cè)量對(duì)象是什么(固體、氣體狀團(tuán)簇中的分子或個(gè)別分子),而且在0K附近有大量的研究和許多實(shí)際應(yīng)用。相對(duì)而言,處理火箭燃料所用的液氧(90 K,-183 °C)和液氫(20 K,-253 °C)要容易一些,處理液氮(77 K,-196 °C)也是如此。相比之下,液氦溫度在4K (−269 °C) 左右——它用于將MRI機(jī)器的磁鐵冷卻到超導(dǎo)區(qū)間——評(píng)估難度要大得多。
溫度測(cè)量的關(guān)鍵是,務(wù)必牢記我們所謂的“溫度”實(shí)際上是衡量被測(cè)對(duì)象的能量。與幾乎所有溫度測(cè)量一樣,用戶必須首先考慮三個(gè)規(guī)格:所需的覆蓋范圍、絕對(duì)精準(zhǔn)確度,以及精度(分辨率)。然后,用戶需要評(píng)估測(cè)量裝置在這些溫度下的影響。
有些令人驚訝的是,一些在“普通”溫度下的常用傳感器甚至可以在較寬的個(gè)位數(shù)區(qū)間內(nèi)工作(圖1),其中包括RTD(使用鉑或銠鐵)、鍺,甚至經(jīng)典的碳基電阻器。然而,這些裝置的強(qiáng)磁場(chǎng)會(huì)引起幾K的傳感器誤差。研究現(xiàn)狀是,對(duì)低K傳感的需求非常大,以至于這些傳感器是許多供應(yīng)商提供的標(biāo)準(zhǔn)目錄產(chǎn)品(想一想,這是相當(dāng)驚人的)。
圖1:多種材料可用于測(cè)量超低K值的溫度,注意垂直刻度不是線性的。CLTS是一種低溫線性溫度傳感器,即由錳銅和鎳箔傳感網(wǎng)格組成的扁平柔性傳感器;RuO2是氧化釕。(圖片來源:ICE Oxford Ltd.)
更復(fù)雜的選擇包括在光纖中使用布里淵散射和其他復(fù)雜的光學(xué)技術(shù)。甚至“不起眼”的電容器也可以用于橋式裝置中,其物理尺寸和形狀以及電容會(huì)按已知的關(guān)系(精確建模的函數(shù))隨溫度變化。
但這些技術(shù)不適用于測(cè)量少量分子的溫度,此類情況需要一些非常深?yuàn)W的方法。一種方案是采用具有精密梯度的強(qiáng)磁場(chǎng)掃描所捕獲的目標(biāo),然后觀察其分子沿該磁場(chǎng)的分布;這種分布會(huì)指示分子的能量,從而得出溫度。另一種方案是用激光推動(dòng)分子,通過激光能量與所產(chǎn)生運(yùn)動(dòng)的關(guān)系得出目標(biāo)能量。這些方法以及其他復(fù)雜方法不僅難以構(gòu)建,而且需要對(duì)物理學(xué)的二階和三階微妙效應(yīng)以及系統(tǒng)缺陷進(jìn)行大量校正和補(bǔ)償。
因此,下次您想要抱怨溫度測(cè)量場(chǎng)景遇到的困難時(shí),就想想那些需要在低K區(qū)間(甚至低至1 K)進(jìn)行測(cè)量的人吧。那是一個(gè)詭異的世界,任何研究人員還必須詢問并回答永恒的儀器問題:“如何校準(zhǔn)、確認(rèn)并驗(yàn)證讀數(shù)?”這幾乎是噩夢(mèng)!
關(guān)于作者
Bill Schweber 是一名電子工程師,撰寫了三本關(guān)于電子通信系統(tǒng)的教科書,以及數(shù)百篇技術(shù)文章、意見專欄和產(chǎn)品特性說明。他擔(dān)任過EE Times的多個(gè)特定主題網(wǎng)站的技術(shù)管理員,以及EDN的執(zhí)行編輯和模擬技術(shù)編輯。
在Analog Devices, Inc.(模擬和混合信號(hào) IC 的領(lǐng)先供應(yīng)商)工作期間,Bill從事營銷傳播(公共關(guān)系),對(duì)技術(shù)公關(guān)職能的兩個(gè)方面均很熟悉,即向媒體展示公司產(chǎn)品、業(yè)務(wù)事例并發(fā)布消息,同時(shí)接收此類信息。
擔(dān)任Analog營銷傳播職位之前,Bill在該公司頗受推崇的技術(shù)期刊擔(dān)任副主編,并且還在公司的產(chǎn)品營銷和應(yīng)用工程部門工作過。在此之前,Bill曾在Instron Corp.工作,從事材料測(cè)試機(jī)器控制的實(shí)際模擬和電源電路設(shè)計(jì)及系統(tǒng)集成。
他擁有電氣工程碩士學(xué)位(馬薩諸塞州立大學(xué))和電氣工程學(xué)士學(xué)位(哥倫比亞大學(xué)),是注冊(cè)專業(yè)工程師,并持有高級(jí)業(yè)余無線電許可證。Bill還規(guī)劃、撰寫并講授了關(guān)于各種工程主題的在線課程,包括MOSFET基礎(chǔ)知識(shí)、ADC選擇和驅(qū)動(dòng)LED。
來源:DigiKey 作者:Bill Schweber