- 音頻DAC的架構設計基本原理
- 音頻DAC的架構設計技術分析
- 增量累加調(diào)制技術
- 輸出電平調(diào)節(jié)
基于增量累加調(diào)制器(SDM)的數(shù)據(jù)轉換器在音頻集成電路行業(yè)已經(jīng)存在很多年。增量累加調(diào)制的固有好處意味著它是設計師在選擇他們的基本設計策略時最根本的原因。然而,盡管基本增量累加調(diào)制器設計的基本原理的建立很完善,實際的實現(xiàn)在不斷的發(fā)展之中,并不斷改善來提供性能、穩(wěn)定性、尺寸和成本的最佳均衡,來滿足當前的市場需求。
本文介紹了歐勝微電子公司最新一代音頻數(shù)字-模擬轉換器(DAC)的架構,專注于設計用于消費電子應用中提供高電壓線驅動器輸出的新器件系列。
基本原理
增量累加調(diào)制器通常用復雜的術語進行描述,使用數(shù)學公式、狀態(tài)表和理論模型。盡管所有這些對于理解增量累加調(diào)制的復雜性是必要的,對于本文的目的來說關鍵是了解SDM架構的好處以及他們在音頻轉換器IC中的應用。增量累加調(diào)制的兩個基本原理是:
●過采樣
采樣過程產(chǎn)生量化誤差;輸出處的采樣電平和期望的輸出電平之間的差值。量化噪聲的能量取決于音頻轉換器的分辨率,分散到采樣頻率的帶寬上。
奈奎斯特采樣原理表明,為準確對一個信號進行從模擬到數(shù)字域的轉換,信號必須在信號最高頻率分量的頻率的兩倍進行采樣。最高頻率分量也稱為奈奎斯特頻率。對于音頻,典型的帶寬在20Hz到20KHz之間,采樣頻率傾向于44.1KHz(對于CD音頻)到192kHz(DVD音頻)。
采樣頻率低于奈奎斯特頻率的兩倍,會導致混疊,輸入信號以奈奎斯特頻率附近的鏡像折疊回到音頻頻段。在SDM轉換器中,數(shù)據(jù)轉換器工作在遠遠高于奈奎斯特頻率兩倍的頻率上,通常是在最低采樣頻率的128倍~768倍。過采樣過程將量化噪聲在比其他數(shù)據(jù)轉換方法更寬的帶寬上擴散量化噪聲,因此在音頻頻段內(nèi)的量化噪聲就非常少。
●噪聲整形
除了在很寬的頻譜上擴散量化噪聲外,SDM還用作低通濾波器來對輸入信號濾波,一個高通濾波器對量化噪聲濾波,將量化噪聲推倒音頻頻帶之外。對于ADC,這允許在不減少SNR的情況下,轉換器使用更少的比特數(shù)。過采樣的要求意味著增量累加調(diào)制器設計最適合低帶寬應用,例如音頻數(shù)據(jù)轉換,例如音頻數(shù)據(jù)轉換。
設計考慮
基于SDM的架構很復雜,設計師有很多選項來針對特定應用優(yōu)化他們的設計。關鍵的折中考慮階數(shù)、分辨率和架構拓撲。
增量累加調(diào)制器的階數(shù):
一階和二階SDM本身是很穩(wěn)定的,產(chǎn)生很大的帶內(nèi)噪聲,但是具有很低的帶外噪聲。高階SDM能有條件穩(wěn)定,會產(chǎn)生更大的帶外噪聲,因此對時鐘抖動很敏感。
歐勝微電子公司最近的DAC架構基于二階增量累加調(diào)制解調(diào)器,驅動時鐘速度很高以減少帶內(nèi)噪聲,因此對于時鐘抖動不敏感。
●DAC分辨率
DAC分辨率的增加降低了量化誤差,因此改善了DAC的理論信噪比(SNR)。
對于每個比特的分辨率,理論的最大SNR近似為6xn,這里n是比特位數(shù)。因此,24比特的音頻DAC理論的最大SNR接近144dB。歐勝公司的DAC設計是基于5比特或6比特轉換器,結合SDM架構提供最高24比特的分辨率。不同的噪聲源,包括模擬和數(shù)字噪聲,SNR不能達到理論的最大值-144dB。然而,因為設計方法改善,歐勝每一代的高性能DAC努力接近理論最大值。性能、穩(wěn)定性、尺寸和成本直接受上面的設計問題影響。
●DAC架構
可以認為典型的增量累加DAC包含下面的要素:插入濾波器—增加有效的比特率,允許DAC對輸入信號進行過采樣。歐勝使用三階級聯(lián)積分梳狀濾波器(CIC)來對8fs~128fs的鏡像進行衰減。這種方法對于輸入采樣率若干倍的頻率分量的衰減很大,改善了DAC對于時鐘抖動的耐受性。增量累加調(diào)制器—具有過采樣和噪聲整形優(yōu)點,這對于上面介紹的高性能音頻數(shù)據(jù)轉換來說很關鍵。數(shù)模轉換器—將SDM輸出轉換成模擬輸出。使用開關電容方法來精確地控制輸出電壓,通過噪聲整形器對引入的噪聲進行濾波,進一步提高對時鐘抖動的免疫力。
歐勝采用的專利方法包括獨特的動態(tài)單元匹配(DEM)方案,這能使電容失配誤差最小,與其它可選的方案相比較,大大改善了DAC線性度。低通濾波器—去除任何保留的高頻分量,實現(xiàn)音頻信號最準確的再現(xiàn)。事實上,這4個單元之間不是完全孤立的模塊,在這些模塊之間處理某些功能。
●輸出電平要求
音頻DAC通常輸出一個滿刻度信號,在5V電源供電條件下,電平在1.0Vrms~1.1Vrms之間,當電源電壓為3.3V時為0.66Vrms~0.72Vrms。在主流的應用中,DAC的輸出被饋入到有源電路,它有兩個目的:
低通濾波器—它能去除在轉換過程中固有的高頻噪聲。放大器—輸出電平通常增加到2Vrms,它需要高電壓電源軌(通常在9V~12V之間)對外部電路的有源器件進行供電。它的實現(xiàn)有幾個原因,包括滿足行業(yè)標準、提供對噪聲的耐受性,以及滿足與音頻設備接口的事實標準。
為什么是2Vrms呢?
各種正式的和事實的行業(yè)標準都得到了發(fā)展,這些標準要求在消費音頻設備(例如DVD刻錄機)和電視之間使用2Vrms的線電平。然而,存在一個普遍的誤解,認為信號電平必須為2Vrms加上或減去一個規(guī)定的公差。事實上,在大多數(shù)標準行業(yè)測試中,音頻設備,例如DVD刻錄機必須能接受最大為2Vrms加上一個公差的信號電平。像DVD播放器這樣的設備必須的輸出電平不能超過2Vrms加上公差。對于信號電平并沒有最小的規(guī)范,盡管為滿足某些行業(yè)標準,輸出信號電平必須在1Vrms左右。
總之,音頻發(fā)送器必須輸出在1Vrms~2Vrms之間的信號電平,音頻接收器必須能接收最高為2Vrms的輸入信號。因為大多數(shù)消費音頻IC的電源為5V或3.3V,不可能從5V的電源產(chǎn)生2Vrms,設計師不得已采用外部有源器件來從DAC電路產(chǎn)生所需要的輸出電平。
WM8501和WM8522
歐勝微電子在設計中考慮了這些線電平需求,設計出了新的系列音頻器件,這些器件的輸出模擬音頻信號為1.7Vrms的線電平,電源為5V。這滿足了行業(yè)標準,不再需要對DAC輸出進行升壓的高電壓電源軌需求。這種高電壓軌在某些應用中依然需要,例如SCART信號處理。但這并不是在所有應用中都要求,消除12V的電源軌以及相關的電源走線、DAC輸出濾波器的有源器件以及相關的PCB空間,實現(xiàn)了大量成本節(jié)省和電路面積的減小。
在DAC輸出處采用無源濾波器可以得到相同的高質量音頻輸出。與要求用于提供必要的增益,以將1.0Vrms放大到2.0Vrms的有源濾波器相比,復雜度和成本都大大降低。
WM8501是一款立體聲音頻DAC,具有1.7Vrms的線驅動器輸出。WM8522是同種產(chǎn)品的一個6通道版本,設計用于多通道音頻系統(tǒng)。兩款芯片都能產(chǎn)生動態(tài)范圍大于100dB的音頻信號,這大大的超過了任何的行業(yè)標準要求,因此能滿足消費音頻設備評論家設定的事實標準。
事實表明,增量累加調(diào)制器的設計在不斷地發(fā)展,以滿足市場對性能和成本的需求?! ?div>要采購濾波器么,點這里了解一下價格!