圖解數(shù)字電路PCB回流路徑
發(fā)布時(shí)間:2020-08-07 責(zé)任編輯:lina
【導(dǎo)讀】數(shù)字電路的原理圖中,數(shù)字信號(hào)的傳播是從一個(gè)邏輯門向另一個(gè)邏輯門,信號(hào)通過導(dǎo)線從輸出端送到接收端,看起來似乎是單向流動(dòng)的,許多數(shù)字工程師因此認(rèn)為回路通路是不相關(guān)的,畢竟,驅(qū)動(dòng)器和接收器都指定為電壓模式器件,為什么還要考慮電流呢?
回流的基本概念
數(shù)字電路的原理圖中,數(shù)字信號(hào)的傳播是從一個(gè)邏輯門向另一個(gè)邏輯門,信號(hào)通過導(dǎo)線從輸出端送到接收端,看起來似乎是單向流動(dòng)的,許多數(shù)字工程師因此認(rèn)為回路通路是不相關(guān)的,畢竟,驅(qū)動(dòng)器和接收器都指定為電壓模式器件,為什么還要考慮電流呢?
實(shí)際上,基本電路理論告訴我們,信號(hào)是由電流傳播的,明確的說,是電子的運(yùn)動(dòng),電子流的特性之一:就是電子從不在任何地方停留,無論電流流到哪里,必然要回來,因此電流總是在環(huán)路中流動(dòng),電路中任意的信號(hào)都以一個(gè)閉合回路的形式存在。對(duì)于高頻信號(hào)傳輸,實(shí)際上是對(duì)傳輸線與直流層之間包夾的介質(zhì)電容充電的過程。
回流的影響
數(shù)字電路通常借助于地和電源平面來完成回流。高頻信號(hào)和低頻信號(hào)的回流通路是不相同的,低頻信號(hào)回流選擇阻抗最低路徑,高頻信號(hào)回流選擇感抗最低的路徑。
當(dāng)電流從信號(hào)的驅(qū)動(dòng)器出發(fā),流經(jīng)信號(hào)線,注入信號(hào)的接收端,總有一個(gè)與之方向相反的返回電流:從負(fù)載的地引腳出發(fā),經(jīng)過敷銅平面,流向信號(hào)源,與流經(jīng)信號(hào)線上的電流構(gòu)成閉合回路。這種流經(jīng)敷銅平面的電流所引起的噪聲頻率與信號(hào)頻率相當(dāng),信號(hào)頻率越高,噪聲頻率越高。邏輯門不是對(duì)絕對(duì)的輸入信號(hào)響應(yīng),而是對(duì)輸入信號(hào)和參考引腳間的差異進(jìn)行響應(yīng)。單點(diǎn)終結(jié)的電路對(duì)引入信號(hào)和其邏輯地參考平面的差異做出反應(yīng),因此地參考平面上的擾動(dòng)和信號(hào)路徑上的干擾是同樣重要的。
邏輯門對(duì)輸入引腳和指定的參考引腳進(jìn)行響應(yīng),我們也不清楚到底哪個(gè)是所指定的參考引腳(對(duì)于 TTL,通常是負(fù)電源,對(duì)于 ECL 通常是正電源,但是并不是全都如此),就這個(gè)性質(zhì)而言,差分信號(hào)的抗干擾能力就能對(duì)地彈噪聲和電源平面滑動(dòng)具有良好的效果。
當(dāng) PCB 板上的眾多數(shù)字信號(hào)同步進(jìn)行切換時(shí)(如 CPU 的數(shù)據(jù)總線、地址總線等),這就引起瞬態(tài)負(fù)載電流從電源流入電路或由電路流入地線,由于電源線和地線上存在阻抗,會(huì)產(chǎn)生同步切換噪聲(SSN),在地線上還會(huì)出現(xiàn)地平面反彈噪聲(簡稱地彈)。而當(dāng)印制板上的電源線和接地線的環(huán)繞區(qū)域越大時(shí),它們的輻射能量也就越大,因此,我們對(duì)數(shù)字芯片的切換狀態(tài)進(jìn)行分析,采取措施控制回流方式,達(dá)到減小環(huán)繞區(qū)域,輻射程度最小的目的。
實(shí)例解釋:
IC1 為信號(hào)輸出端,IC2 為信號(hào)輸入端(為簡化 PCB 模型,假定接收端內(nèi)含下接電阻),第三層為地層。IC1 和 IC2 的地均來自于第三層地層面。TOP 層右上角為一塊電源平面,接到電源正極。C1 和 C2 分別為 IC1、IC2 的退耦電容。圖上所示的芯片的電源和地腳均為發(fā)、收信號(hào)端的供電電源和地。
在低頻時(shí),如果 S1 端輸出高電平,整個(gè)電流回路是電源經(jīng)導(dǎo)線接到 VCC 電源平面,然后經(jīng)橙色路徑進(jìn)入 IC1,然后從 S1 端出來,經(jīng)第二層的導(dǎo)線經(jīng) R1 端進(jìn)入 IC2,然后進(jìn)入 GND 層,經(jīng)紅色路徑回到電源負(fù)極。
在高頻時(shí),PCB 所呈現(xiàn)的分布特性會(huì)對(duì)信號(hào)產(chǎn)生很大影響。我們常說的地回流就是高頻信號(hào)中經(jīng)常要遇到的一個(gè)問題。當(dāng) S1 到 R1 的信號(hào)線中有增大的電流時(shí),外部的磁場變化很快,會(huì)使附近的導(dǎo)體感應(yīng)出一個(gè)反向的電流,如果第三層的地平面是完整的地平面的話,那么會(huì)在地平面上產(chǎn)生一個(gè)藍(lán)色虛線標(biāo)示的電流,如果 TOP 層有一個(gè)完整的電源平面的話,也會(huì)在 TOP 層有一個(gè)沿藍(lán)色虛線的回流。此時(shí)信號(hào)回路有最小的電流回路,向外輻射的能量最小,耦合外部信號(hào)的能力也最小。(高頻時(shí)的趨膚效應(yīng)也是向外輻射能量最小,原理是一樣的。)
由于高頻信號(hào)電平和電流變化都很快,但是變化周期短,需要的能量并不是很大,所以芯片是和離芯片最近的退耦電容取電的。當(dāng) C1 足夠大,而且反應(yīng)又足夠快(有很低的 ESR 值,通常用瓷片電容。瓷片電容的 ESR 遠(yuǎn)低于鉭電容。),位于頂層的橙色路徑和位于 GND 層的紅色路徑可以看成是不存在的(存在一個(gè)和整板供電對(duì)應(yīng)的電流,但不是與圖示信號(hào)對(duì)應(yīng)的電流)。
因此,按圖中構(gòu)造的環(huán)境,電流的整個(gè)通路是:由 C1 的正極→IC1 的 VCC→S1→L2 信號(hào)線→R1→IC2 的 GND→過孔→GND 層的黃色路徑→過孔→電容負(fù)極。可以看到,電流的垂直方向有一個(gè)棕色的等效電流,中間會(huì)感應(yīng)出磁場,同時(shí),這個(gè)環(huán)面也能很容易的耦合到外來的干擾。如果和圖中信號(hào)為一條時(shí)鐘信號(hào),并行有一組 8bit 的數(shù)據(jù)線,由同一芯片的同一電源供電,電流回流途徑是相同的。如果數(shù)據(jù)線電平同時(shí)同向翻轉(zhuǎn)的話,會(huì)使時(shí)鐘上感應(yīng)一個(gè)很大的反向電流,如果時(shí)鐘線沒有良好的匹配的話,這個(gè)串?dāng)_足以對(duì)時(shí)鐘信號(hào)產(chǎn)生致命影響。
這種串?dāng)_的強(qiáng)度不是和干擾源的高低電平的絕對(duì)值成正比,而是和干擾源的電流變化速率成正比,對(duì)于一個(gè)純阻性的負(fù)載來說,串?dāng)_電流正比于 dI/dt=dV /(T¬10%-90%*R)。式中的 dI/dt (電流變化速率)、dV(干擾源的擺幅)和 R(干擾源負(fù)載)都是指干擾源的參數(shù)(如果是容性負(fù)載的話,dI/dt 是與 T¬10%-90%的平方成反比的。)。從式中可以看出,低頻的信號(hào)未必比高速信號(hào)的串?dāng)_小。也就是我們說的:1KHz 的信號(hào)未必是低速信號(hào),要綜合考慮沿的情況。對(duì)于沿很陡的信號(hào),是包含很多諧波成分的,在各倍頻點(diǎn)都有很大的振幅。因此,在選器件的時(shí)候也要注意一下,不要一味選開關(guān)速度快的芯片,不僅成本高,還會(huì)增加串?dāng)_以及 EMC 問題。
任何相鄰的電源層或其它的平面,只要在信號(hào)兩端有合適的電容提供一個(gè)到 GND 的低電抗通路,那么這個(gè)平面就可以作為這個(gè)信號(hào)的回流平面。在平常的應(yīng)用中,收發(fā)對(duì)應(yīng)的芯片 IO 電源往往是一致的,而且各自的電源與地之間一般都有 0.01-0.1uF 的退耦電容,而這些電容也恰恰在信號(hào)的兩端,所以該電源平面的回流效果是僅次于地平面的。而借用其他的電源平面做回流的話,往往不會(huì)在信號(hào)兩端有到地的低電抗通路。這樣,在相鄰平面感應(yīng)出的電流就會(huì)尋找最近的電容回到地。如果這個(gè)“最近的電容”離始端或終端很遠(yuǎn)的話,這個(gè)回流也要經(jīng)過“長途跋涉”才能形成一個(gè)完整的回流通路,而這個(gè)通路也是相鄰信號(hào)的回流通路,這個(gè)相同的回流通路和共地干擾的效果是一樣的,等效為信號(hào)之間的串?dāng)_。
對(duì)于一些無法避免的跨電源分割的情況,可以在跨分割的地方跨接電容或 RC 串聯(lián)構(gòu)成的高通濾波器(如 10 歐電阻串 680p 電容,具體的值要依自己的信號(hào)類型而定,即要提供高頻回流通路,又要隔離相互平面間的低頻串?dāng)_)。這樣可能會(huì)涉及到在電源平面之間加電容的問題,似乎有點(diǎn)滑稽,但肯定是有效的。如果一些規(guī)范上不允許的話,可以在分割處兩平面分別引電容到地。
對(duì)于借用其它平面做回流的情況,最好能在信號(hào)兩端適當(dāng)增加幾個(gè)小電容到地,提供一個(gè)回流通路。但這種做法往往難以實(shí)現(xiàn)。因?yàn)榻K端附近的表層空間大多都給匹配電阻和芯片的退耦電容占據(jù)了。
回流噪聲是參考平面上的噪聲主要的來源之一。因此有必要研究一下返回電流的路徑和流經(jīng)范圍。
回流路徑理論知識(shí)
下圖中是印制板中的一條線路,在導(dǎo)線上有電流通過,通常,我們只看到了敷在表面的用于傳輸信號(hào)的導(dǎo)線,從驅(qū)動(dòng)端到接收端,實(shí)際上,電流總是在環(huán)路上才能流動(dòng),傳輸線是我們可以看到的,而電流回流的途徑通常是不可見的,他們通常借助于地平面和電源平面流回來,由于沒有物理線路,回路途徑變得難于估計(jì),要對(duì)他們進(jìn)行控制有一定的難度。
如圖 3.1 所示, PCB 板上每條導(dǎo)線和其回路構(gòu)成一個(gè)電流環(huán)路,根據(jù)電磁輻射原理,當(dāng)突變的電流流過電路中的導(dǎo)線環(huán)路時(shí),將在空間產(chǎn)生電磁場,并對(duì)其他導(dǎo)線造成影響,這就是我們通常所說的輻射,為了減少輻射的影響,首先應(yīng)該了解輻射的基本原理和與輻射強(qiáng)度有關(guān)的參數(shù)。
圖 3.1 印制板上的差模輻射
這些環(huán)路相當(dāng)于正在工作的小天線,向空間輻射磁場。我們用小環(huán)天線產(chǎn)生的輻射來模擬它,設(shè)電流為 I,面積為 S 的小環(huán),在自由空間為 r 的遠(yuǎn)場測得的電場強(qiáng)度為:
E――電場(V/m)
f――頻率( )
S――面積( )
I――電流(A)
r――距離(m)
――測量天線與輻射平面的夾角( )
式 3.1 適用于放置在自由空間且表面無反射的小環(huán),實(shí)際上我們的產(chǎn)品是在地面進(jìn)行而非自由空間,附近地面的反射會(huì)使測得的輻射增加 6dB,考慮到這一點(diǎn),式 3.1 必須乘 2,如果對(duì)地面反射加以修正并假設(shè)為最大輻射方向,則式 3.1 為
由式 3.2 知,輻射與環(huán)路電流和環(huán)面積成正比,與電流頻率的平方成正比。
印刷電路板中返回電流的路徑是與電流的頻率密切相關(guān)的。根據(jù)電路基本知識(shí),直流或低頻電流總是流向阻抗最小的方向;而高頻的電流在電阻一定的情況下,總是流向感抗最小的方向。
如果不考慮過孔在敷銅平面上形成的孔、溝的影響,阻抗最小的路徑,也就是低頻電流的路徑,是由地敷銅平面上的弧形線組成,如圖 3.2。每根弧線上的電流的密度與此弧線上的電阻率有關(guān)。
圖 3.2 PCB 敷銅平面上高頻電流路徑
對(duì)傳輸線來說,感抗最小的返回路徑,也就是高頻電流返回路徑,就在信號(hào)布線的正下方的敷銅平面上,如圖 3.3。這樣的返回路徑使得整個(gè)回路包圍的空間面積最小,也就使得此信號(hào)形成的環(huán)形天線向空間輻射的磁場強(qiáng)度(或接收空間輻射的能力)最小。
對(duì)于比較長、直的布線,可以看作理想的傳輸線。在其上傳播的信號(hào)返回電流流經(jīng)范圍是以信號(hào)布線為中心軸的帶狀區(qū)域,距離信號(hào)布線中心軸距離越遠(yuǎn),電流密度越小,
如圖 3.3。這一關(guān)系近似滿足式 3.3 [4]:
式 3.3
其中, 為原始信號(hào)電流,單位為“A,安培”;
為信號(hào)布線與敷銅平面的距離,單位為“in.,英寸”;
為敷銅平面上的點(diǎn)到信號(hào)線的垂直距離,單位為“in.,英寸”;
是這一點(diǎn)上的電流密度,單位為“A/in.,安培每英寸”。
圖 3.3 傳輸線返回電流密度分布圖
根據(jù)式 3.3,表 3.1 列出了流經(jīng)以傳輸線中心為中心,寬度為 的帶狀區(qū)域內(nèi)的返回電流占所有返回電流的百分比。
假設(shè)英寸,則經(jīng)過距離傳輸線 0.035 英寸以外的區(qū)域返回的電流只占所有返回電流的 13%,具體分到傳輸線的一側(cè)只有 6.5%,而且密度很小。因此可以忽略不計(jì)。
小結(jié)
1.當(dāng)信號(hào)布線下方具有連續(xù)、致密、完整的敷銅平面時(shí),信號(hào)返回電流對(duì)敷銅平面的噪聲干擾是局部的。因此,只要遵循布局、布線局部化的原則,即人為地拉開數(shù)字信號(hào)線、數(shù)字器件與模擬信號(hào)線、模擬器件之間的距離到一定程度,可以大幅度降低數(shù)字信號(hào)返回電流對(duì)模擬電路的干擾。
2.高頻瞬態(tài)返回電流,經(jīng)由與信號(hào)走線緊鄰的平面(地平面或電源平面)回流到驅(qū)動(dòng)端。驅(qū)動(dòng)器信號(hào)走線的終端負(fù)載,跨接在信號(hào)走線和與信號(hào)走線緊鄰的平面(地平面或電源平面)之間。
3.當(dāng)印制板上的電源線和接地線的環(huán)繞區(qū)域越大時(shí),它們的輻射能量也就越大,因此,我們通過控制回流路徑,可以使得環(huán)繞區(qū)域最小,從而控制輻射程度。
4 回流問題的解決方法
在 PCB 板上引起回流問題通常有三個(gè)方面:芯片互連,銅面切割,過孔跳躍。下面具體對(duì)這些因素進(jìn)行分析。
4.1 芯片互連引起的回流問題
當(dāng)數(shù)字電路工作時(shí),將發(fā)生高、低電壓之間的轉(zhuǎn)換,這就引起瞬態(tài)負(fù)載電流從電源流入電路或由電路流入地線。
對(duì)于數(shù)字器件而言,它引腳輸入電阻可以認(rèn)為無窮大,相當(dāng)于開路(即下圖中的 i=0),事實(shí)上,回路電流是通過芯片與電源和地平面產(chǎn)生的分布電容和分布電感來返回的。以下以集電極輸出電路作為輸出信號(hào)的內(nèi)部電路為例進(jìn)行分析。
4.1.1 驅(qū)動(dòng)端從低電平變化到高電平。
當(dāng)輸出信號(hào)由低電平跳變?yōu)楦唠娖綍r(shí),相當(dāng)于輸出引腳對(duì)傳輸線輸出一個(gè)電流,由于輸入電阻無窮大,我們認(rèn)為對(duì)于芯片而言,沒有電流從輸入管腿上流入即 ,那么,這個(gè)電流必須返回到輸出芯片的電源管腿上。
①信號(hào)走線與電源平面緊鄰。
驅(qū)動(dòng)端對(duì)信號(hào)走線和電源平面及終端負(fù)載構(gòu)成的傳輸線進(jìn)行充電,電流從驅(qū)動(dòng)器的電源管腳進(jìn)入器件,并從驅(qū)動(dòng)器輸出端流向負(fù)載端;
高頻瞬態(tài)返回電流在信號(hào)走線下方的電源平面上回流到驅(qū)動(dòng)器的輸出端,返回電流直接通過電源平面,從驅(qū)動(dòng)器的電源管腳進(jìn)入驅(qū)動(dòng)器,構(gòu)成電流環(huán)路。
②信號(hào)走線與地平面緊鄰。
驅(qū)動(dòng)器對(duì)信號(hào)走線和電源平面及終端負(fù)載構(gòu)成的傳輸線進(jìn)行充電,電流從驅(qū)動(dòng)器的電源管腳進(jìn)入器件,并從驅(qū)動(dòng)器輸出端流向負(fù)載端;
高頻瞬態(tài)返回電流在信號(hào)走線下方的地平面上回流到驅(qū)動(dòng)器的輸出端,返回電流必須借助在驅(qū)動(dòng)器輸出端的電源平面和地平面的耦合電容,從地平面跨越到電源平面,再從驅(qū)動(dòng)器的電源管腳進(jìn)入驅(qū)動(dòng)器,構(gòu)成電流環(huán)路。
4.1.2 驅(qū)動(dòng)端從高電平變化到低電平,相當(dāng)于輸出引腳吸收傳輸線上的電流。
① 信號(hào)走線與電源平面緊鄰。
負(fù)載對(duì)信號(hào)走線和電源平面及驅(qū)動(dòng)器輸出端構(gòu)成的傳輸線進(jìn)行放電,電流從驅(qū)動(dòng)器的輸出管腳進(jìn)入器件,從驅(qū)動(dòng)器的地管腳流出,進(jìn)入地平面,并通過在驅(qū)動(dòng)器地管腳附近的電源平面和地平面耦合電容,跨越到電源平面,返回負(fù)載端;
高頻瞬態(tài)返回電流在信號(hào)走線下方的電源平面上回流到負(fù)載端,構(gòu)成電流環(huán)路。
② 信號(hào)走線與地平面緊鄰。
負(fù)載對(duì)信號(hào)走線和電源平面及驅(qū)動(dòng)器輸出端構(gòu)成的傳輸線進(jìn)行放電,電流從驅(qū)動(dòng)器的輸出管腳進(jìn)入器件,從驅(qū)動(dòng)器的地管腳流出,進(jìn)入地平面,返回負(fù)載端;高頻瞬態(tài)返回電流在信號(hào)走線下方的地平面上回流到負(fù)載端,構(gòu)成電流環(huán)路。
在驅(qū)動(dòng)器的輸出管腳、地管腳附近,應(yīng)當(dāng)布放電源平面和地平面的耦合電容,為返回電流提供返回通路,否則,返回電流將尋找最近的電源平面和地平面的耦合途徑進(jìn)行回流(使得回流途徑難以預(yù)知和控制,從而對(duì)其他走線造成串?dāng)_)。
4.2 覆銅切割造成的回流問題解決辦法
地平面和電源平面可以減少電阻引起的電壓損失。如圖所示,回路電流經(jīng)過地流回,由于電阻 R1 的存在,勢必在 1 和 2 點(diǎn)產(chǎn)生電壓降,電阻越大,壓降越大,引起對(duì)地電平的不一致,如果有地層,可視為線寬無限大,電阻很小的信號(hào)線。回路電流總是從最靠近信號(hào)的地層上流過,當(dāng)?shù)貙硬恢挂粚訒r(shí),如果信號(hào)處于兩層地平面之間而兩者又完全相同時(shí),回路電流將等分在兩個(gè)平面上通過。
4.2.1.在布局、布線局部化的條件下,數(shù)字地平面與模擬地平面公用同一塊敷銅平面,即對(duì)數(shù)字地與模擬地不加區(qū)分,數(shù)字電路本身的噪聲并不會(huì)給模擬電路系統(tǒng)帶來額外的噪聲。
4.2.2.在數(shù)字、模擬混合電路系統(tǒng)中,數(shù)字地與模擬地的共地點(diǎn)選擇在板外,即兩敷銅平面完全獨(dú)立,使得數(shù)字電路與模擬電路之間的信號(hào)線不具備傳輸線的特征,給系統(tǒng)帶來嚴(yán)重的信號(hào)完整性問題。數(shù)字電路與模擬電路采用同一個(gè)電源系統(tǒng),地平面不加分割,在數(shù)字、模擬混合電路系統(tǒng)的設(shè)計(jì)中,在布局模塊化、布線局部化的基礎(chǔ)上,數(shù)字電路模塊和模擬電路模塊公用一個(gè)完整的、不加分割的電壓參考平面,不但不會(huì)增大數(shù)字電路對(duì)模擬電路的干擾,由于消除了信號(hào)線“跨溝”問題,能夠大幅度降低信號(hào)間的串?dāng)_和系統(tǒng)的地彈噪聲,提高了前端模擬電路的精度。
4.3 過孔造成的回流問題解決辦法
在印制板信號(hào)布線時(shí),如果是多層板,很多信號(hào)必須通過換層來完成連接任務(wù),這時(shí)就要用到大量的過孔,過孔對(duì)回流的影響有兩種:一是過孔形成溝槽阻斷回流,二是過孔造成的回流跳層流動(dòng)。
4.3.1.過孔形成的溝槽
在印制板信號(hào)布線時(shí),如果是多層板,很多信號(hào)必須通過換層來完成連接任務(wù),這時(shí)就要用到大量的過孔,如果過孔在電源或地平面排列比較密集,有時(shí)候會(huì)出現(xiàn)許多過孔連成一片的情況,形成所謂的溝,如圖所示。首先,我們應(yīng)該對(duì)這種情況進(jìn)行分析,看看是否回流需要經(jīng)過溝槽,如果信號(hào)的回流無需經(jīng)過溝槽,就不會(huì)對(duì)回流造成阻礙影響。如果回路電路要繞過這條溝返回,形成的天線效應(yīng)將急劇增加,對(duì)周邊信號(hào)產(chǎn)生干擾。通常我們可以在涂敷數(shù)據(jù)生成后,對(duì)過孔過密而形成溝槽的地方加以調(diào)整,使過孔之間留有一定的距離。
4.3.2.過孔形成的跳層現(xiàn)象
下面我們以六層板為例進(jìn)行分析。該六層板有兩個(gè)涂敷層,第二層為地層,第五層為電源層,因此表層和第三層的信號(hào)回流主要在地層;底層和第四層的回流主要在電源層,換層布線時(shí)有以下六種可能:表層<----->第三層,表層<----->第四層,表層<----->底層,第三層<----->第四層, 第三層<----->底層,第四層<----->底層,這六種可能的情況根據(jù)其回路電流的情況可以分為兩大類:回路電流在同一層上和在不同層上流動(dòng)的情況,即是否有跳層現(xiàn)象。
A.回路電流在同一層上流動(dòng)的情況包括表層<----->第三層、第四層<----->底層,如圖所示。在這種情況下,回路電流都在同一層上流動(dòng),但是,由靜電感應(yīng)原理可知,處于電場中的完整的導(dǎo)體,其內(nèi)部電場強(qiáng)度為零,所有的電流均在導(dǎo)體表面流動(dòng),地平面和電源平面實(shí)際上就是這樣一個(gè)導(dǎo)體。我們使用的過孔均為通孔,這些過孔經(jīng)過電源和地平面時(shí)留下的孔洞就給涂敷層上下表面的電流的流通通過了路徑,因此,這些信號(hào)線的回流途徑是很好的,無需采用措施來改善。
B. 回路電流在不同層上流動(dòng)的情況包括表層<----->第四層、表層<----->底層、第三層<----->第四層、第三層<----->底層。下面以表層<----->底層和第三層<----->第四層為例,分析其回流情況。具有跳層現(xiàn)象的信號(hào),需要其在過孔密集區(qū)附近增加一些旁路電容,通常為 0.1uf 的磁片電容,用來提供一個(gè)回流通路的。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖