基于USB 供電的熱敏電阻精確溫度檢測(cè)電路
發(fā)布時(shí)間:2019-07-30 責(zé)任編輯:lina
【導(dǎo)讀】溫度傳感器是電子行業(yè)中應(yīng)用最廣泛的傳感器之一,應(yīng)用范圍包括校準(zhǔn)、安全、暖通空調(diào) (HVAC) 等。盡管應(yīng)用廣泛,但是設(shè)計(jì)人員若要以最低的成本實(shí)現(xiàn)最高精度的性能,溫度傳感器及其實(shí)現(xiàn)仍然極具挑戰(zhàn)性。
溫度傳感器是電子行業(yè)中應(yīng)用最廣泛的傳感器之一,應(yīng)用范圍包括校準(zhǔn)、安全、暖通空調(diào) (HVAC) 等。盡管應(yīng)用廣泛,但是設(shè)計(jì)人員若要以最低的成本實(shí)現(xiàn)最高精度的性能,溫度傳感器及其實(shí)現(xiàn)仍然極具挑戰(zhàn)性。
溫度檢測(cè)的方法有許多種。最常見(jiàn)的方法是使用熱敏電阻、電阻溫度檢測(cè)器 (RTD)、熱電偶或硅溫度計(jì)等溫度傳感器。不過(guò),選擇合適的傳感器只是解決方案的一部分。在此之后,所選傳感器必須連接信號(hào)鏈,該信號(hào)鏈不僅要保持信號(hào)完整性,還要精確補(bǔ)償特定檢測(cè)技術(shù)的獨(dú)有特性,以確保能夠提供精確的數(shù)字化溫度值。
本文介紹了一種 USB 供電電路解決方案來(lái)完成這項(xiàng)任務(wù)。該解決方案使用負(fù)溫度系數(shù) (NTC) 熱敏電阻,結(jié)合 Analog Devices 的 ADuC7023BCPZ62I-R7 精密模擬微控制器來(lái)精確監(jiān)測(cè)溫度。
NTC 熱敏電阻的特性
熱敏電阻是一種對(duì)溫度十分敏感的電阻器,可分為兩種類型:正溫度系數(shù) (PTC) 熱敏電阻和負(fù)溫度系數(shù) (NTC) 熱敏電阻。多晶陶瓷 PTC 熱敏電阻具有較高的正溫度系數(shù),常用于開(kāi)關(guān)應(yīng)用。NTC 陶瓷半導(dǎo)體熱敏電阻具有較高的負(fù)溫度系數(shù),隨著溫度升高而電阻值下降,因而適用于精密溫度測(cè)量。
NTC 熱敏電阻共有三種工作模式:電阻 - 溫度、電壓 - 電流和電流 - 時(shí)間。在利用電阻 - 溫度特性的工作模式下,熱敏電阻的檢測(cè)結(jié)果精度最高。
電阻 - 溫度電路將熱敏電阻配置為“零功率”狀態(tài)。“零功率”狀態(tài)假定器件的激勵(lì)電流或激勵(lì)電壓不會(huì)引起熱敏電阻的自熱現(xiàn)象。
Murata Electronics 的 NCP18XM472J03RB 是一款典型 NTC 熱敏電阻,該器件電阻值為 4.7 k?,采用 0603 封裝,電阻 - 溫度特性具有高度非線性(圖 1)。
圖 1:典型 NTC 熱敏電阻的電阻 - 溫度特性具有高度非線性,因此設(shè)計(jì)人員必須設(shè)法使指定溫度范圍內(nèi)的這種非線性得到控制。(圖片來(lái)源:Bonnie Baker,根據(jù) Murata 提供的電阻值計(jì)算和繪制)
如圖 1 曲線所示,4.7 k? 熱敏電阻的電阻 - 溫度特性高度非線性。NTC 熱敏電阻值隨溫度下降的速率是一個(gè)常數(shù),稱為 β(圖中未顯示)。對(duì)于 Murata 的 4.7 k? 熱敏電阻而言,β = 3500。
使用高分辨率模數(shù)轉(zhuǎn)換器 (ADC) 和經(jīng)驗(yàn)三階多項(xiàng)式或查找表,可以在軟件中校正熱敏電阻的非線性響應(yīng)。
然而,有一種硬件技術(shù)效果更佳、應(yīng)用更簡(jiǎn)單且成本更低,只需應(yīng)用于 ADC 之前,就可以解決 ±25℃ 溫度范圍內(nèi)的熱敏電阻線性化問(wèn)題。
硬件線性化解決方案
實(shí)現(xiàn)熱敏電阻輸出初步線性化的簡(jiǎn)單方法是,將熱敏電阻與標(biāo)準(zhǔn)電阻器(1%,金屬膜)和電壓源串聯(lián)。串聯(lián)的電阻值決定熱敏電阻電路線性響應(yīng)區(qū)間的中點(diǎn)。根據(jù)熱敏電阻值 (RTH) 和 Steinhart-Hart 方程,可確定熱敏電阻的溫度(圖 2)。據(jù)證實(shí),Steinhart-Hart 方程是確定 NTC 熱敏電阻溫度的最佳數(shù)學(xué)表達(dá)式。
圖 2:分壓器(RTH 和 R25)配置可使熱敏電阻響應(yīng)線性化。ADC0(ADC 輸入端)的線性范圍約為 50℃ 的溫度范圍。(圖片來(lái)源:Bonnie Baker)
為推導(dǎo)熱敏電阻的實(shí)際電阻值 RTH,首先要確定分壓器輸出 (VADC0),然后使用 VADC0 求得 ADC 數(shù)字輸出十進(jìn)制代碼 DOUT,而 DOUT 取決于 ADC 位數(shù) (N)、ADC 最大輸入電壓 (VREF) 和 ADC 輸入電壓 (VADC0)。求解 RTH 的第三步,即最后一步是用 R25(25℃ 時(shí)的 RTH 值)乘以 ADC 代碼數(shù)與 ADC 數(shù)字輸出十進(jìn)制代碼的比值。第三步計(jì)算過(guò)程從下述等式 2 開(kāi)始。
等式2
最后一步計(jì)算使用上述 Steinhart-Hart 方程,將熱敏電阻值轉(zhuǎn)換為開(kāi)氏溫度。ADuC7023 精密模擬微控制器使用等式 4 求得傳感器溫度:
等式 4
其中:
T2 = 測(cè)量的熱敏電阻溫度(以 K 為單位)
T1 = 298 K (25℃)
β = 298 K 或 25℃ 時(shí)的熱敏電阻 β 參數(shù)。β = 3500
R25 = 298 K 或 25℃ 時(shí)的熱敏電阻值。R25 = 4.7 kΩ
RTH = 未知溫度時(shí)的熱敏電阻值,由等式 3 計(jì)算
圖 2 中,25℃ 時(shí)的熱敏電阻值 (RTH) 等于 4.7 k?。由于 R25 的阻值等于 25℃ 時(shí)的熱敏電阻值,因此分壓器的線性區(qū)間以 25℃ 為中心(圖 3)。
圖 3:4.7 k? 熱敏電阻與 4.7 k? 標(biāo)準(zhǔn)電阻器串聯(lián)的線性響應(yīng),分壓器兩端電壓為 2.4 V。(圖片來(lái)源:Bonnie Baker,根據(jù) Murata 提供的電阻值計(jì)算和繪制)
圖 3 中,熱敏電阻串聯(lián)電路約在 0℃ 至 +50℃ 的有限溫度范圍內(nèi)可實(shí)現(xiàn)線性溫度響應(yīng)。在此范圍內(nèi),溫度變化誤差為 ±1℃。線性化電阻值 (R25) 應(yīng)等于目標(biāo)溫度范圍中點(diǎn)對(duì)應(yīng)的熱敏電阻值。
在 ±25℃ 的溫度范圍內(nèi),該電路可實(shí)現(xiàn)的精度典型值為 12 位,熱敏電阻的標(biāo)稱溫度為 R25 的阻值。
基于 USB 的溫度監(jiān)測(cè)器
該電路解決方案的信號(hào)路徑始于低成本的 4.7 k? 熱敏電阻,然后連接 Analog Devices 的低成本 ADuC7023 微控制器。該微控制器集成四個(gè) 12 位數(shù)模轉(zhuǎn)換器 (DAC)、一個(gè)多通道 12 位逐次逼近寄存器 (SAR) ADC 和一個(gè) 1.2 V 內(nèi)部基準(zhǔn)源,以及 ARM7® 內(nèi)核、126 KB 閃存、8 KB 靜態(tài)隨機(jī)存取存儲(chǔ)器 (SRAM) 和 UART、定時(shí)器、SPI 和兩個(gè) I2C 接口等各種數(shù)字外設(shè)(圖 4)。
圖 4:該溫度檢測(cè)電路使用 USB 接口進(jìn)行供電,使用 ADuC7034 微控制器的 I2C 接口進(jìn)行數(shù)字通信。(圖片來(lái)源:Analog Devices)
圖 4 中,電路的電源和接地都來(lái)自四線 USB 接口。Analog Devices 的 ADP3333ARMZ-5-R7 低壓差線性穩(wěn)壓器使用 5 V USB 電源產(chǎn)生 3.3 V 輸出。ADP3333 穩(wěn)壓輸出為 ADuC7023 的 DVDD 端供電。ADuC7023 的 AVDD 電源需要另接濾波器,如圖所示。此外,USB 電源與線性穩(wěn)壓器的 IN 引腳之間也需接入濾波器。
溫度數(shù)據(jù)交換也是通過(guò) USB 接口的 D+ 和 D- 引腳實(shí)現(xiàn)。ADuC7023 能夠使用 I2C 協(xié)議發(fā)送和接收數(shù)據(jù)。該應(yīng)用電路使用雙線 I2C 接口發(fā)送數(shù)據(jù)并接收配置命令。
該應(yīng)用使用了如下 ADuC7023 特性:
12 位 SAR ADC。
帶 SRAM 的 Arm ARM7TDMI。集成的 62 KB 內(nèi)部閃存用于運(yùn)行用戶代碼,以配置和控制 ADC、管理 USB 接口的通信以及處理熱敏電阻的 ADC 轉(zhuǎn)換。
I2C 接口用于與主機(jī) PC 通信。
兩個(gè)外部開(kāi)關(guān)/按鈕(圖中未顯示)可強(qiáng)制器件進(jìn)入閃存引導(dǎo)模式:使 DOWNLOAD 保持低電平并切換 RESET 開(kāi)關(guān),ADuC7023 將進(jìn)入引導(dǎo)模式,而不是正常的用戶模式。在引導(dǎo)模式下,利用 USB 接口連接器件相關(guān)的 I2CWSD 軟件工具,可以對(duì)內(nèi)部閃存重新編程。
VREF 是帶隙基準(zhǔn)。此基準(zhǔn)電壓可用作系統(tǒng)中其他電路的電壓基準(zhǔn)。各引腳連接的最小 0.1 μF 電容用于降噪。
ADuC7023 外形小巧 (5 mm × 5 mm),采用 32 引腳芯片級(jí)封裝,因此整個(gè)電路占用的印刷電路板空間極小,有利于節(jié)省成本和空間。
雖然 ADuC7023 具有功能強(qiáng)大的 ARM7 內(nèi)核和高速 SAR ADC,但仍能提供低功耗解決方案。整個(gè)電路的典型功耗為 11 mA,ARM7 內(nèi)核時(shí)鐘速度達(dá) 5 MHz,主 ADC 用于測(cè)量外部熱敏電阻。在兩次溫度測(cè)量之間,可以關(guān)閉微控制器和/或 ADC 以進(jìn)一步節(jié)省功耗。
布局注意事項(xiàng)
圖 4 所示的信號(hào)處理系統(tǒng)很容易導(dǎo)致誤解,乍看之下,該系統(tǒng)僅包含三個(gè)有源器件,但是如此簡(jiǎn)潔的布局中卻隱藏著一些問(wèn)題值得注意。
例如,ADuC7023 微控制器是相當(dāng)復(fù)雜的模擬數(shù)字系統(tǒng),需要特別注意接地規(guī)則。雖然該系統(tǒng)的模擬域頻率似乎“很慢”,但片上采樣保持 ADC 卻是高速多通道器件,采樣速率高達(dá) 1 MS/s,最大時(shí)鐘速度達(dá) 41.78 MHz。該系統(tǒng)的時(shí)鐘上升和下降時(shí)間只有數(shù)納秒,因此該應(yīng)用屬于高速應(yīng)用。
顯然,面對(duì)混合信號(hào)電路時(shí)需要特別注意。下述四點(diǎn)核對(duì)清單涵蓋了主要方面:
使用電解電容器
選擇較小的電容器
接地平面注意事項(xiàng)
可以選擇小型鐵氧體磁珠
該電路中常用 10 mF 至 100 mF 的大電解電容器,距離芯片不超過(guò) 2 英寸。此類電容器可充當(dāng)電荷儲(chǔ)存器,用于消除走線電感產(chǎn)生的瞬時(shí)電荷。
該電路中常用 0.01 mF 至 0.1 mF 的小電容,應(yīng)盡可能靠近器件的電源引腳放置。此類電容器可用于高頻噪聲的快速高效接地。
接地平面(去耦電容下方)可對(duì)高頻電流去耦,最大限度地減少 EMI/RFI 輻射。請(qǐng)選擇面積較大的低阻抗區(qū)域作為接地平面。為了最大限度地減小走線電感,電容器應(yīng)使用通孔或較短印制線接地。
除了圖 4 中的去耦電容外,USB 電纜的 EMI/RFI 保護(hù)也需要使用鐵氧體。該電路中使用的鐵氧體磁珠是 Taiyo Yuden 的 BK2125HS102-T,100 MHz 時(shí)的阻抗為 1000 Ω。
總結(jié)
溫度傳感器是應(yīng)用最廣泛的傳感器之一,但其設(shè)計(jì)要求卻始終給設(shè)計(jì)人員帶來(lái)艱巨挑戰(zhàn)——既要縮減成本和尺寸,又要提高檢測(cè)精度??紤]到這些要求,本文介紹了基于 USB 的低功耗商用熱敏電阻系統(tǒng)實(shí)現(xiàn)方法。該系統(tǒng)采用 Analog Devices 的小型 12 位 ADC 和高精度 ADuC7023 微控制器解決方案。這一組合成功使用電阻器來(lái)校正 NTC 熱敏電阻的非線性響應(yīng),可精確檢測(cè)和監(jiān)視溫度。
特別推薦
- AMTS 2025展位預(yù)訂正式開(kāi)啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車(chē)世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開(kāi)售Nordic Semiconductor nRF9151-DK開(kāi)發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車(chē)規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開(kāi)啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開(kāi)發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽(yáng)能
太陽(yáng)能電池
泰科源
鉭電容
碳膜電位器