你的位置:首頁 > 互連技術 > 正文

了解 MOSFET 通態(tài)漏源電阻

發(fā)布時間:2023-11-11 責任編輯:lina

【導讀】分立 MOSFET 數(shù)據(jù)表中重要的規(guī)格之一是漏源通態(tài)電阻,縮寫為 R DS (on)。這個 R DS (on)想法看起來非常簡單:當 FET 處于截止狀態(tài)時,源極和漏極之間的電阻非常高,以至于我們假設電流為零。當 FET 的柵源電壓 (V GS ) 超過閾值電壓 (V TH ) 時,它處于“導通狀態(tài)”,漏極和源極通過電阻等于 R DS(on) 的溝道連接。然而,如果您熟悉 MOSFET 的實際電氣行為,您應該很容易認識到該模型與事實不符。


分立 MOSFET 數(shù)據(jù)表中重要的規(guī)格之一是漏源通態(tài)電阻,縮寫為 R DS (on)。這個 R DS (on)想法看起來非常簡單:當 FET 處于截止狀態(tài)時,源極和漏極之間的電阻非常高,以至于我們假設電流為零。當 FET 的柵源電壓 (V GS ) 超過閾值電壓 (V TH ) 時,它處于“導通狀態(tài)”,漏極和源極通過電阻等于 R DS(on) 的溝道連接。然而,如果您熟悉 MOSFET 的實際電氣行為,您應該很容易認識到該模型與事實不符。

首先,F(xiàn)ET 并不真正具有“導通狀態(tài)”。當未處于截止狀態(tài)時(我們在此忽略亞閾值傳導),F(xiàn)ET 可能處于三極管區(qū)域或飽和區(qū)域。每個區(qū)域都有自己的電流-電壓關系。然而,我們可以安全地假設“導通狀態(tài)”對應于三極管區(qū)域,因為 R DS(on)與開關電路相關,而不是小信號放大器和開關電路——例如,用于驅(qū)動電機或控制繼電器——使用截止區(qū)域和三極管區(qū)域?!?br style="padding: 0px; margin: 0px auto;"/>
但是,三極管區(qū)域不僅受電阻控制,而且受一個相當復雜的方程控制:

_D=mu_nC_{ox}frac{W}{L}left(left(V_{GS}-V_{TH} ight)V_{DS}-frac{1}{2}V_{ DS}^2右)

(這是針對 NMOS 器件;PMOS 器件將具有 μ p而不是 μ n。)但是,如果我們忽略 V DS 2項,則方程可以簡化如下:

I D = μ n C o x W L( V G S – V T H ) V D S

現(xiàn)在我們確實在漏源電流 (I D ) 和漏源電壓 (V DS ) 之間存在線性(即電阻)關系。然而,“電阻”并不是恒定的,就像單純的電阻器一樣;相反,電阻對應于

1μnCoxWL _ _ _ _ _ _ _( VGS - VTH ) _ _ _ _

這給我們帶來了關于 R DS (on)的重要一點:它受到柵源電壓的影響。以下是取自Fairchild NDS351AN MOSFET數(shù)據(jù)表的示例:


了解 MOSFET 通態(tài)漏源電阻


該部件的典型閾值電壓為 2.1 V。如果您快速查看 V TH規(guī)格和 R DS(on)規(guī)格,您可能會認為可以使用 3.3 V 邏輯信號驅(qū)動該 FET,并且實現(xiàn)所宣傳的導通狀態(tài)電阻性能。考慮到數(shù)據(jù)表明確指定了與 R DS(on)規(guī)格相對應的柵源電壓,這有點粗心;然而,一兩個 R DS(on) /V GS數(shù)據(jù)點并不能體現(xiàn)通態(tài)電阻的極端增加,這種情況適用于實際上遠高于典型 V TH的柵源電壓。因此,這個故事的寓意是 1) 請記住,導通狀態(tài)(即三極管區(qū)域)電阻取決于 V GS,2) 有關詳細信息,請參閱 R DS(on)與 V GS的關系圖。

此外,導通狀態(tài)電阻不等于上面給出的三極管區(qū)域方程所表示的電阻。后者是 MOSFET 溝道的電阻,而導通電阻包含其他電阻源——鍵合線、外延層等。電阻特性受制造技術以及 R DS 不同組件各自貢獻的影響( on)根據(jù)特定設備的預期電壓范圍而變化。

影響通態(tài)電阻的另外兩個因素是結(jié)溫和漏極電流,如 NDS351AN 數(shù)據(jù)表中的這兩張圖所示:


了解 MOSFET 通態(tài)漏源電阻


因此,您可能需要貨比三家,花一些時間閱讀一些數(shù)據(jù)表,然后才能找到適合特定開關應用的 MOSFET。


免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。


推薦閱讀:

中國電子智能制造工廠示范線首次亮相第102屆中國電子展

ST:不止于“芯”,半導體業(yè)如何為ESG可持續(xù)發(fā)展賦能

如何克服快速、高效的電動汽車充電基礎設施的設計挑戰(zhàn)

高通公司中國區(qū)董事長孟樸:在邊緣側(cè)賦能下一輪數(shù)字化轉(zhuǎn)型浪潮

數(shù)字電源解決方案提供性能和集成增強


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉