如何使用納米功率EMI耐受型運(yùn)算放大器改善IoT設(shè)計(jì)
發(fā)布時(shí)間:2021-05-01 責(zé)任編輯:wenwei
【導(dǎo)讀】物聯(lián)網(wǎng)(IoT)應(yīng)用的設(shè)計(jì)者有兩個(gè)主要關(guān)注點(diǎn):管理電源以最大限度地延長(zhǎng)電池壽命,并確保可靠的操作防止各種電磁干擾(EMI)。物聯(lián)網(wǎng)革命將導(dǎo)致部設(shè)數(shù)十億電池和線路供電的連接設(shè)備,其中包括許多無(wú)線設(shè)備。所有這些設(shè)備都在爭(zhēng)奪同一頻率頻譜。這將產(chǎn)生越來(lái)越嘈雜的環(huán)境,其中電磁波從多個(gè)源輻射。自從引入無(wú)線設(shè)備以來(lái),電磁信號(hào)的干擾已成為共享的未許可頻譜的問(wèn)題,但當(dāng)操作中的設(shè)備的數(shù)量增加時(shí),問(wèn)題的重要性也隨之增加。諸如煙霧探測(cè)器、有毒氣體傳感器和PIR傳感器等具有無(wú)線能力的終端設(shè)備由于它們彼此相互作用,因此需要進(jìn)行額外的輻射EMI測(cè)試,如圖1所示。
圖1:帶有電磁波的無(wú)源紅外(PIR)傳感器和一氧化碳檢測(cè)器
創(chuàng)建無(wú)線感測(cè)節(jié)點(diǎn)的競(jìng)爭(zhēng)為EMI測(cè)試帶來(lái)了一定程度的復(fù)雜性。系統(tǒng)設(shè)計(jì)人員需要仔細(xì)甄選部件,以避免重新設(shè)計(jì)的昂貴成本,這可能在產(chǎn)品開(kāi)發(fā)的最后階段延遲上市時(shí)間。除在噪聲條件下工作,電池供電的連接設(shè)備還需要可靠地操作多年而無(wú)需更換電池。物聯(lián)網(wǎng)設(shè)備的電池壽命變化很大,從幾小時(shí)到幾年不等,具體取決于應(yīng)用和其操作環(huán)境。這些IoT設(shè)備的設(shè)計(jì)人員必須選擇消耗極低電流的組件,以延長(zhǎng)工作壽命并提供EMI抗擾性。
TI的LPV811系列納米功率放大器消耗低至320nA的靜態(tài)電流,以最大限度延長(zhǎng)電池壽命,并內(nèi)部保護(hù)免受EMI。然而,這些設(shè)備并不包括在許多最近發(fā)布的運(yùn)算放大器上所看到的全輸入EMI濾波器。我們?cè)赥I有意為之,因?yàn)樘砑虞斎隕MI濾波器大大增加了輸入電容,這可能導(dǎo)致具有大反饋電阻值和源阻抗的亞微安電路中的峰值。相反,我們?cè)贚PV801、LPV802、LPV811和LPV812的布局和內(nèi)部設(shè)計(jì)中采用了內(nèi)部(專有)預(yù)防措施,使其盡可能對(duì)抗EMI。
為了驗(yàn)證我們內(nèi)置的EMI緩和技術(shù)的有效性,我們對(duì)比了LPV802和不具備內(nèi)部EMI保護(hù)的兩個(gè)流行的競(jìng)爭(zhēng)設(shè)備。在所有條件下,使用LPV802的電路表現(xiàn)出比使用競(jìng)爭(zhēng)設(shè)備的電路更好的EMI抗擾性。我們根據(jù)IEC 61000-4-3(電磁兼容性(EMC)——輻射測(cè)試條件)測(cè)試了所有三個(gè)設(shè)備的EMI耐受性。我們?cè)?0MHz至6GHz頻率下將被測(cè)設(shè)備(DUT)置于校準(zhǔn)的射頻(RF)范圍,同時(shí)根據(jù)IEC 61000-4-3 EMC輻射規(guī)范監(jiān)測(cè)DUT的故障。為了對(duì)比這三個(gè)設(shè)備,我們?cè)谙嗤碾娐分型瑫r(shí)將所有三個(gè)設(shè)備暴露于相同的EMC輻射。并監(jiān)測(cè)其輸出偏差。此外,為了測(cè)量常見(jiàn)EMI濾波技術(shù)的有效性,我們測(cè)試了兩組電路板,一組電路板增加了外部輸入EMI電容器;另一組電路板未裝設(shè)EMI電容器。
圖2所示為在標(biāo)準(zhǔn)62mil、雙層FR4電路板上構(gòu)建的測(cè)試板,其兩側(cè)帶有接地層,以測(cè)試EMI性能。四針連接器可快速更換電路板。插接傳感器引腳可更容易地移除傳感器。
圖2:帶傳感器的測(cè)試板
圖3所示為腔中的測(cè)試裝置。有四個(gè)測(cè)試板測(cè)試EMI性能。三個(gè)測(cè)試板具有相同電路,其上安裝有不同的運(yùn)算放大器。另外一個(gè)測(cè)試板以接地參考配置構(gòu)建,但未在測(cè)試中使用。我們將四個(gè)測(cè)試板中的每一個(gè)通過(guò)1m長(zhǎng)的四個(gè)導(dǎo)體屏蔽電纜連接到中心電池盒(2個(gè)AA電池)。電纜兩端都有EMI扼流圈。我們通過(guò)15米長(zhǎng)的UTP CAT-5電纜將電池盒連接到控制室,并使用適當(dāng)?shù)腅MI扼流圈,以將輸出電壓供給測(cè)井系統(tǒng)。帶有錐體的兩個(gè)白盒為用于在測(cè)試期間監(jiān)控電場(chǎng)的場(chǎng)傳感器。
圖3:IEC61000-4-3 EMC輻射測(cè)試的測(cè)試設(shè)置
圖4所示為IEC 61000-4-3規(guī)定的測(cè)試結(jié)果之一。在30V / m輻射水平,兩個(gè)競(jìng)爭(zhēng)設(shè)備在140MHz時(shí)開(kāi)始減弱,而LPV802保持到100MHz。一般來(lái)說(shuō),使用LPV802的電路的EMI性能優(yōu)于使用競(jìng)爭(zhēng)設(shè)備,這針對(duì)不同輻射水平下進(jìn)行的所有規(guī)定測(cè)試,特別是在100-200MHz范圍內(nèi)進(jìn)行的測(cè)試。所有設(shè)備大多不受上(> 400MHz)頻率的影響。有關(guān)測(cè)試條件和結(jié)果的詳細(xì)信息,請(qǐng)參閱應(yīng)用注釋“在氣體傳感器應(yīng)用中對(duì)比LPV802與其他設(shè)備的EMI性能”。
圖4:使用電容器進(jìn)行30V / m測(cè)試的結(jié)果
添加外部EMI輸入電容也有助于整體性能。我建議在正常設(shè)計(jì)過(guò)程中將其添加。EMI保護(hù)不能完全消除EMI的影響,但它確實(shí)有助于降低影響。
添加外濾可進(jìn)一步降低影響。即使使用受EMI保護(hù)的設(shè)備,我仍建議進(jìn)行外部濾波。
使用諸如消耗納安培靜態(tài)電流及抗EMI的LPV801、LPV802、LPV811和LPV812的部件,可以幫助設(shè)計(jì)人員構(gòu)建具有更長(zhǎng)電池壽命并符合全球EMI規(guī)定的系統(tǒng)。這有助于降低維護(hù)成本,提高上市時(shí)間。此外,若在產(chǎn)品開(kāi)發(fā)最后階段EMI出現(xiàn)故障,也無(wú)需耗費(fèi)巨資進(jìn)行重新設(shè)計(jì)。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開(kāi)啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開(kāi)售Nordic Semiconductor nRF9151-DK開(kāi)發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開(kāi)啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索