反思后硅世界中的服務(wù)器電源架構(gòu):從48Vin - 1Vout直接獲取
發(fā)布時(shí)間:2021-01-19 來源:Alex Lidow,David Reusch,John Glaser 責(zé)任編輯:wenwei
【導(dǎo)讀】人類社會(huì)對(duì)信息的需求正以前所未有的速度增長。隨著諸如云計(jì)算和物聯(lián)網(wǎng)(IoT)這些新興技術(shù)的發(fā)展,更快地接觸更多的信息這一趨勢(shì)并未顯示任何放緩跡象。高速率傳輸信息成為可能得益于機(jī)架和服務(wù)器機(jī)架,它們多數(shù)處于集中式數(shù)據(jù)中心。
2014年,數(shù)據(jù)中心(設(shè)在美國)所消耗的能量約為1000億千瓦時(shí)(kWh),而國家科學(xué)研究開發(fā)公司(NRDC)預(yù)計(jì)到2020年,數(shù)據(jù)中心電力消費(fèi)量每年將增至約1400億千瓦時(shí),相當(dāng)于50個(gè)發(fā)電站的年產(chǎn)量。
支持這一快速增長需求所需電力來自我們的電網(wǎng),并經(jīng)過多次轉(zhuǎn)換階段,然后其才真正地將剩余能量饋進(jìn)數(shù)字半導(dǎo)體芯片。圖1所示為這一“旅程”的圖解。該圖中還顯示由傳輸和電力轉(zhuǎn)換造成的損失 – 從發(fā)電廠到所有工作的計(jì)算機(jī)芯片。
將這些效能數(shù)字相乘顯示,電網(wǎng)需要提供150瓦功率以滿足可能僅需要100瓦的數(shù)字芯片的需求。因此,在整個(gè)美國,由于服務(wù)器用電源轉(zhuǎn)換造成的總浪費(fèi)電量為330億千瓦時(shí),這幾乎相當(dāng)于十幾個(gè)發(fā)電廠產(chǎn)出的電量。但是,服務(wù)器場中浪費(fèi)的總電量更多,因?yàn)橥ㄟ^電源轉(zhuǎn)換的每瓦功率損耗實(shí)際上是被轉(zhuǎn)換成熱能的能量,而除去該熱能需要更多功率。
圖1:現(xiàn)代服務(wù)器場中使用的典型多級(jí)功率變換結(jié)構(gòu),它從電網(wǎng)中汲取150瓦的功率,為服務(wù)器中使用的數(shù)字處理器提供100瓦的電能。
然而,電網(wǎng)已經(jīng)存在了一個(gè)多世紀(jì),基于二戰(zhàn)后開發(fā)的半導(dǎo)體技術(shù)已構(gòu)建轉(zhuǎn)換的各個(gè)階段。這些半導(dǎo)體基于硅晶體,正是硅的性能和局限性形成了圖1所示架構(gòu)。
在本文中,我們將演示基于增強(qiáng)型氮化鎵(eGaN®技術(shù))的電源轉(zhuǎn)換器的優(yōu)點(diǎn),其現(xiàn)有數(shù)據(jù)中心和集中于低至1VDC負(fù)載電壓的48 VDC輸入電壓所用的電信架構(gòu)解決方案。我們將探討高性能GaN功率晶體管的能力,以使用新方法以更高效率和更高功率密度為功率數(shù)據(jù)中心和電信系統(tǒng)提供電源。此方法在效率和功率密度方面都比先前的基于Si MOSFET的架構(gòu)更高。
從48 VIN– 1 VOUT直接獲取
自采用12 V中間總線架構(gòu)(IBA)以來,此總線轉(zhuǎn)換器在輸出功率中正接近數(shù)量級(jí)的提高。在型電源模塊足跡中,現(xiàn)行設(shè)計(jì)從約100W增至約1千瓦。這意味著至POL轉(zhuǎn)換器的12V總線上的電流量以10的系數(shù)增加,而且不用降低總線電阻,隨后的總線傳導(dǎo)損耗中會(huì)以2的數(shù)量級(jí)增加。相比傳統(tǒng)的IBA系統(tǒng)中的硅基解決方案,GaN基技術(shù)的解決方案已證明其效率顯著提高。
然而,隨著48 VIN總線轉(zhuǎn)換器的轉(zhuǎn)換損耗不斷增加,主板上不斷攀升的12V總線損及GaN技術(shù)更高的性能,現(xiàn)可考慮不同的體系結(jié)構(gòu),如使用非隔離型POL轉(zhuǎn)換器從48 VIN直接進(jìn)入負(fù)載,如圖2底部所示。
圖2:中間總線架構(gòu)(IBA)和直接轉(zhuǎn)換DC總線結(jié)構(gòu)。
傳統(tǒng)型降壓轉(zhuǎn)換器可作為第一種方法來評(píng)估將48 VIN直接轉(zhuǎn)換為1 VOUT。降壓轉(zhuǎn)換器的拓?fù)浣Y(jié)構(gòu)最簡單,而且是絕大多數(shù)現(xiàn)有12 VIN系統(tǒng)采用的做法。對(duì)于48 V輸入,在EPC9041演示板中嵌入的80V eGaN單片式半橋集成電路(EPC2105)可選定用于具有更高降壓比的應(yīng)用。TI采用的第二種方法是將48 VIN直接轉(zhuǎn)換到1 VOUT,其采用基于變壓器的設(shè)計(jì)來提高轉(zhuǎn)換器效率。一個(gè)基于LMG5200 GaN的半橋被用于48 VIN輸入側(cè),而四個(gè)30 V EPC2023 eGaN FET被用于低電壓輸出側(cè)。
兩種48 VIN至1 VOUT設(shè)計(jì)的高效率和功率密度如圖3所示。降壓轉(zhuǎn)換器的效率是整個(gè)動(dòng)力傳動(dòng)系的效率,包括電感器(Würth Elektronik 744 301 033)、電容器和印刷電路板損失。在300kHz的開關(guān)頻率條件下,可實(shí)現(xiàn)84%的最高效率,而在20 A條件下,實(shí)現(xiàn)的效率約為83.5%。降壓構(gòu)件(不包括控制器)的功率密度約為300 W/in3。對(duì)于600 kHz條件下操作的基于變壓器的方法,可實(shí)現(xiàn)超過90%的效率,而在50 A輸出電流條件下,可實(shí)現(xiàn)近88%的效率。對(duì)于基于變壓器的構(gòu)件(不包括控制器),功率密度為約80 W/in3。
圖3:基于eGaN POL轉(zhuǎn)換器的效率和功率密度,VIN = 48 V至VOUT = 1V。
使用圖4所示的基于GaN技術(shù)的最佳設(shè)計(jì),對(duì)比單級(jí)48 VIN至1 VOUT的POL轉(zhuǎn)換器和傳統(tǒng)兩級(jí)IBA法的預(yù)計(jì)效率和功率密度,并在表1總結(jié)(硅基解決方案遠(yuǎn)不及這些基于GaN技術(shù)的解決方案有效)?;贕aN集成電路的IBA電源轉(zhuǎn)換器比基于降壓的方法的48 VIN?1 VOUT直接轉(zhuǎn)換預(yù)計(jì)會(huì)有1.5%的效率提升。然而,當(dāng)12V總線的損失增加約2%時(shí),總體系統(tǒng)效率極其相似。傳統(tǒng)IBA法和48 VIN直接轉(zhuǎn)換基于降壓的方法也有類似的功率密度。對(duì)于48 VIN基于變壓器的方法,系統(tǒng)效率比傳統(tǒng)IBA法高出7%,該系統(tǒng)具有低功率密度,比常規(guī)IBA基于GaN的方法低約三分之一。
DC總線架構(gòu)還具有潛在的成本優(yōu)勢(shì),因?yàn)镮BC的成本可省去。而48 VIN POL轉(zhuǎn)換器與12 VIN POL轉(zhuǎn)換器相比,增加的成本將降至最低,因?yàn)樗鼈兪褂玫碾娫囱b置、控制器和驅(qū)動(dòng)程序的數(shù)量類似。
圖4:基于GaN技術(shù)的48 VIN中間總線架構(gòu)和48 VIN DC總線架構(gòu)的性能對(duì)比
(a) 縮放到500瓦的輸出功率。
表1:48 VIN中間總線架構(gòu)和48 VIN DC總線架構(gòu)的性能對(duì)比總結(jié)
圖5中,我們?cè)诨趀GaN FET和集成電路的設(shè)計(jì)中應(yīng)用單級(jí)效率的同時(shí)需要重新查看圖1內(nèi)容。通過省去服務(wù)器場電源架構(gòu)末級(jí)所獲得的直接節(jié)省電能不僅降低了成本,而且還降低7%到15%不等的功耗,這取決于基于GaN的方法。與硅基解決方案對(duì)比時(shí),這關(guān)聯(lián)到每年直接節(jié)約的多達(dá)210億千瓦時(shí)的電能。當(dāng)服務(wù)器場中的空調(diào)能源成本增加時(shí),還可節(jié)約更多電能,僅在美國可將總節(jié)約電能降至服務(wù)器所耗1400億千瓦時(shí)的近25%。
結(jié)論
當(dāng)今美國服務(wù)器場中可能的節(jié)省電能所造成的影響甚至比后硅世界中eGaN技術(shù)的影響更大,而此影響的一個(gè)示例是這一新興技術(shù)可有效使用電力。eGaN技術(shù)為更高性能的半導(dǎo)體提供了一個(gè)途徑,重新開啟了推動(dòng)創(chuàng)新的摩爾定律的可能性——就像摩爾定律超出常規(guī)一樣。例如,eGaN技術(shù)實(shí)現(xiàn)了許多新應(yīng)用,如無線電力傳輸、5G蜂窩技術(shù)、自主車輛和結(jié)腸鏡檢查丸劑。而且,隨著電子行業(yè)在固有屬性中獲得的高性能功能能力的經(jīng)驗(yàn)和知識(shí),由此產(chǎn)生的高性能eGaN半導(dǎo)體設(shè)備將實(shí)現(xiàn)很多不可預(yù)見的應(yīng)用,就像二戰(zhàn)后時(shí)代帶來的此應(yīng)用的前身——硅。
eGaN®FET是Efficient Power Conversion公司的注冊(cè)商標(biāo)。
一般參考
[1] D. REUSCH和J.Glaser,DC-DC轉(zhuǎn)換器手冊(cè),電源轉(zhuǎn)換出版物,2015年,ISBN 978-0-9966492-0-9
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
生產(chǎn)測(cè)試
聲表諧振器
聲傳感器
濕度傳感器
石英機(jī)械表
石英石危害
時(shí)間繼電器
時(shí)鐘IC
世強(qiáng)電訊
示波器
視頻IC
視頻監(jiān)控
收發(fā)器
手機(jī)開發(fā)
受話器
數(shù)字家庭
數(shù)字家庭
數(shù)字鎖相環(huán)
雙向可控硅
水泥電阻
絲印設(shè)備
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測(cè)
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器