【導讀】在《模擬對話》2017年12月文章中介紹SMU ADALM1000 之后,我們希望將該系列續(xù)寫下去,介紹一些小的基本測量。本實驗活動的目標是通過脈沖波形研究串聯(lián)RL電路的瞬態(tài)響應并了解時間常數(shù)的概念。
圖1. ADALM1000原理圖。
現(xiàn)在我們開始下一個實驗。
目標:
本實驗活動的目標是通過脈沖波形研究串聯(lián)RL電路的瞬態(tài)響應并了解時間常數(shù)的概念。
背景:
本實驗活動與我們的另一個實驗活動(活動4:RC電路的瞬態(tài)響應)類似,區(qū)別在于電容被電感取代。本實驗將向RL電路施加一個方波,以分析該電路的瞬態(tài)響應。RL電路對電路時間常數(shù)的影響由與之相關的脈沖寬度決定。
時間常數(shù)(τ):RC或RL電路中發(fā)生某些電壓和電流變化所需的時間度量。一般而言,發(fā)生切換后經(jīng)過的時間超過五倍時間常數(shù)(5τ)時,各電流和電壓已達到最終值,此過程亦稱為穩(wěn)態(tài)響應。
一個RL電路的時間常數(shù)等于其等效電感除以等效電感兩端的戴維寧電阻。
脈沖就是電壓或電流從一個電平跳變到另一電平,然后又返回原來電平的過程。如果一個波形的高電平時間與其低電平時間相等,則稱之為方波。每個脈沖序列循環(huán)的長度稱為周期(T)。一個理想方波的脈沖寬度(tp)等于時間周期的一半。
方波的脈沖寬度和頻率之間的關系可表示為:
圖2. 串聯(lián)RL電路。
在RL電路中,電感兩端的電壓隨著時間推移而減小,而在RC電路中,電容兩端的電壓隨著時間推移而增大。因此,RL電路中的電流與RC電路中的電壓具有相同的形式:它們均根據(jù)1 – e–(t × R/L)以指數(shù)方式上升到最終值。
電感中電流的表達式為:
其中V表示t = 0時電路上施加的源電壓。該響應曲線呈遞增趨勢,如圖3所示。
圖3. 串聯(lián)RL電路中電感電流增大。
(時間軸利用τ歸一化)
電感上的電流衰減表達式為:
其中:
I0 為t = 0時電感中儲存的初始電流。
L/R = τ為時間常數(shù)。
該響應曲線是一個衰減式指數(shù)曲線,如圖4所示。
圖4. 串聯(lián)RL電路所用電感中的電流衰減。
利用ALM1000可以直接測量通過電感的電流(由驅動源提供的電流),因此我們將測量并比較電流和電阻兩端的輸出電壓。電阻波形應與電感電流相似,因為VR = I × LR。依據(jù)示波器上的波形,我們應能測量時間常數(shù)τ,它應該等于τ = L/RTOTAL。
這里,RTOTAL是總電阻,可以通過RTOTAL = R電感+ R來計算。
"R電感"是測得的電感電阻值,其測量方法是在運行實驗之前將電感連接到歐姆表。
材料:
● ADALM1000硬件模塊
● 一個電阻(220 Ω)
● 一個電感(20 mH(兩個10 mH串聯(lián)))
步驟:
1. 利用歐姆表測量電感和電阻組合的電阻RTOTAL。您可以使用ALM1000歐姆表工具進行測量。請注意,當連接串聯(lián)的L1和R1時,歐姆表工具測量相對于地的電阻。
2. 在無焊試驗板上搭建如圖5所示的電路,使用的元件為R1 = 220 Ω,L1 = 20 mH。打開ALICE示波器軟件。
圖5. 實驗設置。
圖6. 試驗板連接。
3. 將通道A AWG最小值設為0.5 V,最大值設為4.5V,從而生成一個峰峰值為4 V,中心為2.5 V的方波,作為輸入電壓施加于電路。在AWG A模式下拉菜單中選擇SVMI模式。在AWG A波形下拉菜單中選擇方波。在AWG B模式下拉菜單中選擇高阻抗模式。用公式2計算施加的頻率,tp = 5τ。
4. 在ALICE曲線下拉菜單中選擇顯示CA-V、CA-I和CB-V。在觸發(fā)器下拉菜單中選擇CA-V和自動電平。調節(jié)時間基準,直到顯示屏方格上大約可顯示兩個周期的方波信號。
圖7. 示波器配置。
此配置使得示波器可以查看通道A上電路的輸入電壓和電感中的電流,以及通道B上電路的輸出電壓。請確保已勾選Sync AWG選擇器。
5. VR波形與IL(t)波形形狀相同。依據(jù)VR波形測量時間常數(shù)t,并將其與您從L/RTOTAL計算出的時間常數(shù)進行比較(提示:找到對應于0.63 VR值的時間)。詳情參見"背景"部分。
6. 觀察電路響應并再次記錄tp =25τ和tp =0.5τ時的結果。
問題:
● 包括不同tp值的IL和VR圖:2τ、5τ和10τ。
● 電容儲存電荷。您認為電感儲存什么?簡短回答。
您可以在學子專區(qū)博客上找到問題答案。
注釋
與所有ALM實驗室一樣,當涉及與ALM1000連接器的連接和配置硬件時,我們使用以下術語。綠色陰影矩形表示與ADALM1000模擬I/O連接器的連接。模擬I/O通道引腳被稱為CA和CB。當配置為驅動電壓/測量電流時,添加-V,例如CA-V;當配置為驅動電流/測量電壓時,添加-I,例如CA-I。當通道配置為高阻態(tài)模式以僅測量電壓時,添加-H,例如CA-H。
示波器跡線同樣按照通道和電壓/電流來指稱,例如:CA-V和CB-V指電壓波形,CA-I和CB-I指電流波形。
對于本文示例,我們使用的是ALICE 1.1版軟件。
文件:alice-desktop-1.1-setup.zip。請點擊此處下載。
ALICE桌面軟件提供如下功能:
● 雙通道示波器,用于時域顯示和電壓/電流波形分析。
● 雙通道任意波形發(fā)生器(AWG)控制。
● X和Y顯示,用于繪制捕捉的電壓/電流與電壓/電流數(shù)據(jù),以及電壓波形直方圖。
● 雙通道頻譜分析儀,用于頻域顯示和電壓波形分析。
● 波特圖繪圖儀和內置掃描發(fā)生器的網(wǎng)絡分析儀。
● 阻抗分析儀,用于分析復雜RLC網(wǎng)絡,以及用作RLC儀和矢量電壓表。
● 一個直流歐姆表相對于已知外部電阻或已知內部50 Ω電阻測量未知電阻。
● 使用ADALP2000模擬器件套件中的AD584精密2.5 V基準電壓源進行電路板自校準。
● ALICE M1K 電壓表。
● ALICE M1K 表源。
● ALICE M1K 桌面工具。
欲了解更多信息,請點擊 此處。
注:需要將ADALM1000連接到您的PC才能使用該軟件。
圖8. ALICE桌面1.1菜單。
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。
推薦閱讀: