【導讀】工業(yè)4.0已經(jīng)徹底改變了制造業(yè),改變了工廠的設計和實施方式。在工廠自動化和過程控制應用中,Industry 4.0的影響歸結(jié)為兩個基本概念:分散式系統(tǒng)和智能確定性系統(tǒng)的擴散。分散式系統(tǒng)固有地需要進行模塊化設置,并具靈活性。高效、低功耗和熱優(yōu)化的設計是這些系統(tǒng)的關鍵推動因素。智能確定性系統(tǒng)是可以早期檢測故障并提高可靠性的模塊。
在工廠自動化和過程控制應用中,數(shù)模轉(zhuǎn)換器(DAC)通常在用于可編程邏輯控制器(PLC)和傳感器發(fā)射器的模擬輸出中被發(fā)現(xiàn)。這兩種情況下,DAC都可用于傳送電壓輸出或電流輸出。
DAC8775是TI最新的高精度DAC,通過包括4-20mA驅(qū)動器、電壓輸出和片上自適應電源管理在行業(yè)中最具集成性。在這篇博文中,我將提供與DAC8775相關的設計技術(shù)示例,并探索如何設計這個行業(yè)的當前趨勢。
許多系統(tǒng)控制器由于傳感器數(shù)量的增加而處理數(shù)百個輸入/輸出(I / O)點。這給設計人員提供了一個挑戰(zhàn),即將更多的I / O通道融入一個小型形狀系數(shù),增加了對熱優(yōu)化和高效率系統(tǒng)的需求。大多數(shù)模擬輸出模塊4-20mA驅(qū)動電路采用具有增益級的高側(cè)電壓 - 電流轉(zhuǎn)換電路。圖1所示為典型的架構(gòu)。
由放大器A1建立的回路將DAC輸出電壓轉(zhuǎn)換成電流。通過負反饋,放大器A1將RSET兩側(cè)的電壓設置為等于DAC輸出。RSET兩側(cè)的這個電壓降將設定流過第一級IM的電流。(我假設IRSET等于IM的理想情況)。通過使用由放大器A2和RMIRROR鱷魚RSENSE電阻對的組合建立的回路,產(chǎn)生的電流IM進一步被增益。放大器A2將強制RSENSE兩側(cè)的電壓等于VMIRROR。通過與RMIRROR和RSENSE的比例成正比的因子,這產(chǎn)生了從IM增益的負載電流。如圖1所示,RLOAD通常表示線性執(zhí)行器負載,如同PLC系統(tǒng)的情況。由于目前通過RMIRROR不提供負載,這將直接降低系統(tǒng)的效率。良好的設計實踐是將該電流最小化,將其設置為小于輸出電流的1%。出于計算的目的,假設RMIRROR和RSENSE之間的高比率(> 1到100),我們忽略IM。
圖1:高側(cè)電壓 - 電流轉(zhuǎn)換器
在典型情況下,VPOS電壓可以在12-36V之間變化。RLOAD也可以從短電阻到1kΩ變化。為了說明這一點,可以考慮我們的第一個示例,即VPOS等于36V,RLOAD等于1Ω的情況。當閥門設定為滿量程時,控制器將通過負載驅(qū)動20mA。這意味著負載消耗的功率是PLOAD = I2R = 0.4mW。
所產(chǎn)生的總功率為Pgenerated = = 0.72W。從這個例子可以看出,電壓 - 電流轉(zhuǎn)換電路耗散剩余的功率:0.72W-0.4mW = 0.7196W。這是一個非常低效的系統(tǒng),并將導致系統(tǒng)溫度的不必要地增加。
考慮第二個示例,其中負載阻抗較高,為1kΩ。在這種情況下,PLOAD = I2R = 0.4W。所產(chǎn)生的總功率為Pgenerated = = 0.72W。電壓 - 電流轉(zhuǎn)換電路耗散其余功率:0.72W-0.4W = 0.32W。
您可以想象,如果存在大量的功率損耗,在這么小的空間中增加更多的通道將變得不可持續(xù),這直接增加系統(tǒng)溫度,降低可靠性并增加故障。我給出的示例顯示單通道設計的功率損耗。在存在四個通道的情況下,第一個和第二個示例中的功率損耗分別接近2.8W和1.2W。
由于功率損耗隨著更高通道數(shù)模塊的使用而急劇增加,一種可能的解決方案是根據(jù)負載自適應地更改VPOS供應。您可以通過添加一個簡單的反饋網(wǎng)絡并使用降壓/升壓轉(zhuǎn)換器為負載提供必要的電源來實現(xiàn)。這樣的系統(tǒng)將如圖2所示的框圖。
圖2:具有降壓/升壓轉(zhuǎn)換器的高端電壓 - 電流轉(zhuǎn)換器
在這種設計技術(shù)中,降壓/升壓轉(zhuǎn)換器將檢測驅(qū)動負載的輸出FET的漏極 - 源極電壓,并產(chǎn)生內(nèi)部成比例的誤差電流。通過復雜的狀態(tài)機算法,設備將決定降低或提升電源。該技術(shù)在四通道DAC8775中得以實現(xiàn),從而實現(xiàn)更高的效率。
如果使用與第一個示例相同的值,當負載為1Ω時,降壓/升壓轉(zhuǎn)換器會將DAC的電源降低,從而獲得所需的最小電源。在DAC8775的情況下,將低至4.5V。
如在第一個示例中,PLOAD = I2R = 0.4mW。產(chǎn)生的總功率為Pgenerated = VI = 0.09W。電壓 - 電流轉(zhuǎn)換電路耗散其余功率:0.09W-0.4mW = 89.6mW。因此,與示例1相比,功耗提高了8倍。
對于1kΩ負載情況,PLOAD = I2R = 0.4W。所產(chǎn)生的總功率為Pgenerated = = 0.46W,因為降壓/升壓轉(zhuǎn)換器將VPOS設置為23V。電壓 - 電流轉(zhuǎn)換電路耗散其余功率:0.46W-0.4W = 0.06W。因此,與沒有降壓/升壓轉(zhuǎn)換器反饋的設計相比,功耗提高了五倍。
DAC8775的效率也導致需要更多的熱優(yōu)化系統(tǒng)。在具有和不具有自適應功率反饋電路的四通道設計中比較芯片的結(jié)溫顯示了芯片溫度的顯著改善。圖3和圖4所示為DAC8775的測量結(jié)果,比較了在1Ω和1kΩ RLOAD情況下,使用和不使用降壓/升壓轉(zhuǎn)換器的模溫。從圖3可以看出,這種技術(shù)可以將結(jié)溫提高至高達36°C。
當將越來越多的通道擠入更小的空間時,熱優(yōu)化成為區(qū)分模塊功能的關鍵性能參數(shù)。在熱量未優(yōu)化的模塊中,系統(tǒng)故障是常見的,且由于溫度漂移較大,性能下降。DAC8775由于其高集成度和高效率而解決了這兩個挑戰(zhàn),并具有出色的DC和漂移性能。
圖3:RLOAD的模溫為1Ω
圖4:1KΩ的RLOAD的模溫
如果芯片溫度超過150℃,DAC8775提供過溫報警,這是豐富的智能診斷功能的其中一個特色,可幫助早期檢測故障。這些包括開路負載、短路、循環(huán)冗余校驗(CRC)、看門狗定時器和合規(guī)電壓。除了故障警報之外,設備還允許您選擇便于可靠的系統(tǒng)操作的預設操作。您可以告知設備什么都不做、停機或進入預編程的安全碼。
推薦閱讀: