你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文
一文看懂儀表放大器與運(yùn)算放大器的區(qū)別
發(fā)布時(shí)間:2018-06-04 責(zé)任編輯:lina
【導(dǎo)讀】本文首先介紹了儀表放大器與運(yùn)算放大器的不同之處,其次介紹了儀表放大器的工作原理、特點(diǎn)及應(yīng)用,最后介紹了運(yùn)算放大器的工作原理及基本電路,具體的跟隨小編一起來(lái)了解一下。
儀表放大器與運(yùn)算放大器有何不同
儀表放大器是一種具有差分輸入和相對(duì)參考端單端輸出的閉環(huán)增益單元。大多數(shù)情況下,儀表放大器的兩個(gè)輸入端阻抗平衡并且阻值很高,典型值≥109 Ω。其輸入偏置電流也應(yīng)很低,典型值為 1 nA至 50 nA。與運(yùn)算放大器一樣,其輸出阻抗很低,在低頻段通常僅有幾毫歐(mΩ)。運(yùn)算放大器的閉環(huán)增益是由其反向輸入端和輸出端之間連接的外部電阻決定。與放大器不同的是,儀表放大器使用一個(gè)內(nèi)部反饋電阻網(wǎng)絡(luò),它與其信號(hào)輸入端隔離 。對(duì)儀表放大器的兩個(gè)差分輸入端施加輸入信號(hào),其增益既可由內(nèi)部預(yù)置,也可由用戶通過引腳連接一個(gè)內(nèi)部或者外部增益電阻器設(shè)置,該增益電阻器也與信號(hào)輸入端隔離。
專用的儀表放大器價(jià)格通常比較貴,于是我們就想能否用普通的運(yùn)放組成儀表放大器?答案是肯定的。使用三個(gè)普通運(yùn)放就可以組成一個(gè)儀用放大器。電路如下圖所示:
輸出電壓表達(dá)式如圖中所示。
看到這里大家可能會(huì)問上述表達(dá)式是如何導(dǎo)出的? 為何上述電路可以實(shí)現(xiàn)儀表放大器?下面我們就將探討這些問題。在此之前,我們先來(lái)看如下我們很熟悉的差分電路:
如果R1 = R3,R2 = R4,則VOUT = (VIN2—VIN1)(R2/R1)
這一電路提供了儀表放大器功能,即放大差分信號(hào)的同時(shí)抑制共模信號(hào),但它也有些缺陷。首先,同相輸入端和反相輸入端阻抗相當(dāng)?shù)投也幌嗟?。在這一例子中VIN1反相輸入阻抗等于 100 kΩ,而VIN2同相輸入阻抗等于反相輸入阻抗的兩倍,即200 kΩ。因此,當(dāng)電壓施加到一個(gè)輸入端而另一端接地時(shí),差分電流將會(huì)根據(jù)輸入端接收的施加電壓而流入。(這種源阻抗的不平衡會(huì)降低電路的CMRR。)
另外,這一電路要求電阻對(duì)R1 /R2和R3 /R4的比值匹配得非常精密,否則,每個(gè)輸入端的增益會(huì)有差異,直接影響共模抑制。例如,當(dāng)增益等于 1 時(shí),所有電阻值必須相等,在這些電阻器中只要有一只電 阻 值 有 0.1% 失 配 , 其CMR便 下 降 到 66 dB(2000:1)。同樣,如果源阻抗有 100 Ω的不平衡將使CMR下降 6 dB。
為解決上述問題,我們?cè)谶\(yùn)放的正負(fù)輸入端都加上電壓跟隨器以提高輸入阻抗。如下圖所示:
以上前置的兩個(gè)運(yùn)放作為電壓跟隨器使用,我們現(xiàn)在改為同相放大器,電路如下所示:
輸出電壓表達(dá)式如上圖所示。上圖所示的電路增加增益(A1 和 A2)時(shí),它對(duì)差分信號(hào)增加相同的增益,也對(duì)共模信號(hào)增加相同的增益。也就是說(shuō),上述電路相對(duì)于原電路共模抑制比并沒有增加。
下面,要開始最巧妙的變化了!看電路先:
這種標(biāo)準(zhǔn)的三運(yùn)放儀表放大器電路是對(duì)帶緩沖減法器電路巧妙的改進(jìn)。像前面的電路一樣,上圖中A1 和A2 運(yùn)算放大器緩沖輸入電壓。然而,在這種結(jié)構(gòu)中,單個(gè)增益電阻器RG連接在兩個(gè)輸入緩沖器的求和點(diǎn)之間,取代了帶緩沖減法器電路的R6和R7。由于每個(gè)放大器求和點(diǎn)的電壓等于施加在各自正輸入端的電壓,因此,整個(gè)差分輸入電壓現(xiàn)在都呈現(xiàn)在RG兩端。因?yàn)檩斎腚妷航?jīng)過放大后(在A1 和A2的輸出端)的差分電壓呈現(xiàn)在R5,RG和R6這三只電阻上,所以差分增益可以通過僅改變RG進(jìn)行調(diào)整。
這種連接有另外一個(gè)優(yōu)點(diǎn):一旦這個(gè)減法器電路的增益用比率匹配的電阻器設(shè)定后,在改變?cè)鲆鏁r(shí)不再對(duì)電阻匹配有任何要求。如果R5 = R6,R1= R3和R2 = R4,則VOUT = (VIN2-VIN1)(1+2R5/RG)(R2/R1)由于RG兩端的電壓等于VIN,所以流過RG的電流等于VIN/RG,因此輸入信號(hào)將通過A1 和A2 獲得增益并得到放大。然而須注意的是對(duì)加到放大器輸入端的共模電壓在RG兩端具有相同的電位,從而不會(huì)在RG上產(chǎn)生電流。由于沒有電流流過RG(也就無(wú)電流流過R5和R6),放大器A1 和A2 將作為單位增益跟隨器而工作。因此,共模信號(hào)將以單位增益通過輸入緩沖器,而差分電壓將按〔1+(2 RF/RG)〕的增益系數(shù)被放大。這也就意味著該電路的共模抑制比相比與原來(lái)的差分電路增大了〔1+(2 RF/RG)〕倍!
在理論上表明,用戶可以得到所要求的前端增益(由RG來(lái)決定),而不增加共模增益和誤差,即差分信號(hào)將按增益成比例增加,而共模誤差則不然,所以比率〔增益(差分輸入電壓)/(共模誤差電壓)〕將增大。因此CMR理論上直接與增益成比例增加,這是一個(gè)非常有用的特性。
最后,由于結(jié)構(gòu)上的對(duì)稱性,輸入放大器的共模誤差,如果它們跟蹤,將被輸出級(jí)的減法器消除。這包括諸如共模抑制隨頻率變換的誤差。上述這些特性便是這種三運(yùn)放結(jié)構(gòu)得到廣泛應(yīng)用的解釋。
到這里,我們導(dǎo)出了這個(gè)經(jīng)典電路的;來(lái)龍去脈: 差分放大器--》前置電壓跟隨器--》電壓跟隨器變?yōu)橥喾糯笃?-》三運(yùn)放組成的儀用放大器。
儀表放大器介紹
儀表放大器工作原理
用分離元件構(gòu)建儀表放大器(IA)需要花費(fèi)很多的時(shí)間和精力,而采用集成儀表放大器(IA)或差分放大器則是一種簡(jiǎn)便而又可行的替換方案。為了更好的理解儀表放大器(IA),了解共模抑制比(CMR)的重要性,這里以惠斯通電橋變送器來(lái)進(jìn)行說(shuō)明,R1=R2=R3=R4=5kΩ,激勵(lì)電壓(Vex)為10V。這樣,在空載條件下,對(duì)“電橋”進(jìn)行計(jì)算可得:
V1=Vex(R2/(R2+R1)),V1=5VV2=Vex(R3/(R3+R4)),V2=5V所以:V=V1-V2=5V-5V=0V變送器輸出就是電橋兩個(gè)輸出端的電壓差(ΔV)。假定有某個(gè)激勵(lì)加在電橋的4個(gè)活動(dòng)臂上,并使得R1和R4的值有所增加,同時(shí)R2和R3的值有所減少;此時(shí)若取:R1=R4=5001Ω,R2=R3=4999Ω,Vex=10V,那么可得:V1=5.001V V2=4.999V,實(shí)際上,人們所關(guān)心的信號(hào)是:
ΔV=V1-V2=2mV。因此,通過對(duì)共模電壓(CMV)進(jìn)行計(jì)算可知:即便電橋不平衡,共模電壓(CMV)仍然等于(V1+V2,/2=5V。理想情況下,此電路的輸出是:Vo=ΔV· Gain。
上述計(jì)算表明,在有大的共模信號(hào)時(shí),測(cè)量一個(gè)微弱的電壓信號(hào)比較困難;而ΔV(以mV為單位)則可通過測(cè)量?jī)蓚€(gè)較大的電壓信號(hào)V2與V1來(lái)獲得,這兩個(gè)電壓均可在伏特級(jí)。
儀表放大器特點(diǎn)及應(yīng)用
儀表放大器專門精密差分 電壓放大器,它源于運(yùn)算放大器,且優(yōu)于運(yùn)算放大器。儀表放大器把關(guān)鍵元件集成在放 大器內(nèi)部,其獨(dú)特的結(jié)構(gòu)使它具有高共模抑制比、高輸入阻抗、低噪聲、低線性誤差、 低失調(diào)漂移增益設(shè)置靈活和使用方便等特點(diǎn),使其在數(shù)據(jù)采集、傳感器信號(hào)放大、高速 信號(hào)調(diào)節(jié)、醫(yī)療儀器和高檔音響設(shè)備等方面倍受青睞。
運(yùn)算放大器介紹
運(yùn)算放大器的工作原理
運(yùn)算放大器具有兩個(gè)輸入端和一個(gè)輸出端,如圖3-1所示,其中標(biāo)有“+”號(hào)的輸入端為“同相輸入端”而不能叫做正端),另一只標(biāo)有“一”號(hào)的輸入端為“反相輸入端”同樣也不能叫做負(fù)端,如果先后分別從這兩個(gè)輸入端輸入同樣的信號(hào),則在輸出端會(huì)得到電壓相同但極性相反的輸出信號(hào):輸出端輸出的信號(hào)與同相輸人端的信號(hào)同相,而與反相輸入端的信號(hào)反相。
運(yùn)算放大器所接的電源可以是單電源的,也可以是雙電源的,如圖3-1所示。運(yùn)算放大器有一些非常有意思的特性,靈活應(yīng)用這些特性可以獲得很多獨(dú)特的用途,總的來(lái)說(shuō),這些特性可以綜合為兩條:
1、運(yùn)算放大器的放大倍數(shù)為無(wú)窮大。
2、運(yùn)算放大器的輸入電阻為無(wú)窮大,輸出電阻為零。
現(xiàn)在我們來(lái)簡(jiǎn)單地看看由于上面的兩個(gè)特性可以得到一些什么樣的結(jié)論。
首先,運(yùn)算放大器的放大倍數(shù)為無(wú)窮大,所以只要它的輸入端的輸入電壓不為零,輸出端就會(huì)有與正的或負(fù)的電源一樣高的輸出電壓本來(lái)應(yīng)該是無(wú)窮高的輸出電壓,但受到電源電壓的限制。準(zhǔn)確地說(shuō),如果同相輸入端輸入的電壓比反相輸入端輸入的電壓高,哪怕只高極小的一點(diǎn),運(yùn)算放大器的輸出端就會(huì)輸出一個(gè)與正電源電壓相同的電壓;反之,如果反相輸入端輸入的電壓比同相輸人端輸入的電壓高,運(yùn)算放大器的輸出端就會(huì)輸出一個(gè)與負(fù)電源電壓相同的電壓(如果運(yùn)算放大器用的是單電源,則輸出電壓為零)。
其次,由于放大倍數(shù)為無(wú)窮大,所以不能將運(yùn)算放大器直接用來(lái)做放大器用,必須要將輸出的信號(hào)反饋到反相輸入端(稱為負(fù)反饋)來(lái)降低它的放大倍數(shù)。如圖1-3中左圖所示,R1的作用就是將輸出的信號(hào)返回到運(yùn)算放大器的反相輸入端,由于反相輸入端與輸出的電壓是相反的,所以會(huì)減小電路的放大倍數(shù),是一個(gè)負(fù)反饋電路,電阻Rf也叫做負(fù)反饋電阻。
還有,由于運(yùn)算放大器的輸入為無(wú)窮大,所以運(yùn)算放大器的輸入端是沒有電流輸入的——它只接受電壓。同樣,如果我們想象在運(yùn)算放大器的同相輸入端與反相輸入端之間是一只無(wú)窮大的電阻,那么加在這個(gè)電阻兩端的電壓是不能形成電流的,沒有電流,根據(jù)歐姆定律,電阻兩端就不會(huì)有電壓,所以我們又可以認(rèn)為在運(yùn)算放大器的兩個(gè)輸人端電壓是相同的(電壓在這種情況就有點(diǎn)像用導(dǎo)線將兩個(gè)輸入端短路,所以我們又將這種現(xiàn)象叫做“虛短”)。
運(yùn)算放大器基本電路
單電源工作的運(yùn)放需要外部提供一個(gè)虛地,通常情況下,這個(gè)電壓是VCC/2,圖二的電路可以用來(lái)產(chǎn)生VCC/2的電壓,但是他會(huì)降低系統(tǒng)的低頻特性。
R1 和R2 是等值的,通過電源允許的消耗和允許的噪聲來(lái)選擇,電容C1 是一個(gè)低通濾波器,用來(lái)減少?gòu)碾娫瓷蟼鱽?lái)的噪聲。在有些應(yīng)用中可以忽略緩沖運(yùn)放。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖